A NOTE ON THE OSEEN KERNELS

NICOLAS LERNER

ABSTRACT. The Oseen operators are A’laxjé‘zk e!®, where A is the standard
Laplace operator and ¢t € R;. We give an explicit expression for the kernels
of these Fourier multipliers which involves the incomplete gamma function and
the confluent hypergeometric functions of the first kind. This explicit expression
provides directly the classical decay estimates with sharp bounds. Although the
computations are elementary and the definition of the Oseen kernels goes back
to the 1911 paper of this author, we were not able to find the simple explicit
expression below in the literature.
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1. INTRODUCTION

The (Marcel) Riesz operators (R;)i1<;j<n are the following Fourier multipliers (we
use the notation @ for the Fourier transform of u: our normalization is given in the
formula (3.1) of our appendix)

(L) EE =G, Ry = DyAD| = (A

The R; are selfadjoint bounded operators on L*(R™) with norm 1. The Riesz op-
erators are the natural multidimensional generalization of the Hilbert transform,
given by the convolution with pv 7:_35 which is the one-dimensional Fourier multiplier
by sign&. These operators are the paradigmatic singular integrals, introduced by
Calder6n and Zygmund and are bounded on LP(R") for 1 < p < oo and send L'
into L. However they are not continuous on the Schwartz class, because of the
singularity at the origin. The Leray-Hopf projector! is the following matrix valued
Fourier multiplier, given by

£®¢ _
(1.2) P =Id- €2 = (5jk — ¢ 2£j£k>1§j,k§n’ P=P(D)=1d-R® R.
We can also consider the n x n matrix of operators given by Q = R® R =

(RjRyk)1<jr<n sending the vector space of L*(R") vector fields into itself. The
operator Q is selfadjoint and is a projection since Y, R} = Id so that Q* =
(>, RiRiRRy)x = Q. As a result the operator

(1.3) P=Id-R®R=1d—|D|*(D®D)=1d-A"YV&®V)
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is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-
Weyl projector); the operator P is in fact the orthogonal projection onto the closed
subspace of L? vector fields with null divergence. We have for a vector field u =
>, u;0;, the identity graddivu = V(V - u), and thus

1.4 graddiv=V®V=A R® R, sothat
(
(1.5) Q=R®R=A"'graddiv, divR® R = div,

which implies div Pu = divu — div(R ® R)u = 0, and if divu = 0, we have Qu =0
and u = Qu 4+ Pu = Pu. This operator plays an important role in fluid mechanics
since the Navier-Stokes system ([7], [3], [6]) for incompressible fluids can be written
as

Oww+P((v-V)v) —vhv =0,
(1.6) Pv =,

U|t:0 = Up.

As already said for the Riesz operators, P is not a classical pseudodifferential opera-
tor, because of the singularity at the origin: however it is indeed a Fourier multiplier
with the same continuity properties as those of R, and in particular is bounded on
L? for p € (1,4+00). In three dimensions the curl operator is given by the matrix

0 —035 0,
(1.7) curl=[ 05 0 —01| =curl”
-0, 01 0

so that curl®> = —AId + grad div and (the Biot-Savard law)

(1.8) Id = (—=A) ' curl* +A ! grad div = (—A) "' curl®* +1d P,

which gives

(1.9) curl’ = —AP,

so that [P, curl] = 0 and

(1.10) Pcurl = curl P = curl(—A) ' curl® = curl(Id —A~" grad div) = curl

since curl grad = 0 (note also that the transposition of the latter gives div curl = 0).
The solutions of (1.6) are satisfying

v(t) = ey — /0 eI=IAPY (v(s) ® v(s))ds.

2. THE ACTION OF THE LERAY PROJECTOR ON (GAUSSIAN FUNCTIONS

We want now to compute the action of P on Gaussian functions.
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Lemma 2.1. Let n > 1 be an integer, 1 < j,k < n and a > 0. Then, with
ug(z) = a™?e ™ we have

(2.1)
for j # k, (R;Ryug)(x) = —z;xp|z| " 2y(1 + E,(Z?T z|})n 2,
7 J 2
e n _ 1, .. n .
(22 (Bw)w) = el e P)r 4 el (G, anfel ),

where v is the incomplete gamma function (see below a reminder).

A reminder. We recall the definition of the (lower) incomplete Gamma function
(see e.g. 2], [1]),

(2.3) (a,z) = / " peletay

0
=a 2% " F(1;1 4+ a;0) =a "2 Fi(a; 1+ a; —2),

where | F} is the confluent hypergeometric function of the first kind. Also for n
positive integer, we have

k k

Y(n,z)=(n—-1(1—e" Z %):F(n)(l—e_x Z %)

0<k<n—1 0<k<n

The confluent hypergeometric function has a hypergeometric series given by

1Fi(a;b;2) =1+ .

ala +1) 2? (a) 2"
T e T T 2 (o)

()i k1

k>0

where (z),, stands for the Pochhammer symbol

r
(x)n:%:x(xﬂ)m(ﬂn—n.
We note also the following identity
k
z
2.4 Vac C\Z*, F(Lil+az) =
(24) @ €C\L, ALt as) ;(a—kl)...(a—i—k)

which is an entire function of the variable z for these values of a; as a result, we can
write for Rea > 0,2 > 0,

k
T
2.5 =a 2% "
(25) Ve, 7) =aate ;(a+1)...(a+k‘)’
and this implies that
(2.6) Va >0,z >0, a 'z% " <y(a,z) <min((a),a z%).

We have also

(2.7) v(1+a,x) =ay(a,x) —x% "
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Remark 2.2. The above lemma can be generalized easily to the case where A is
a complex-valued symmetric matric with a positive definite real part, with us(x) =
(det A)/2e=mAxx) yith (det A)H2 = eztracelos A (see the appendiz for the choice of
the determination of Log A).

Proof of the lemma. We consider, for ¢ > 0 the smooth function
(28) Fialtia) = [ e i@ e g,

and we note that

oF:; . —tan2|g2
(29) 2 (t,2) = —4r* / e2ims ot ¢, e

= —4r? (2 a%axk / 2imat o ~UT K g = 9,0, (e~ 50 (dt) 2,

7T
so that

OF; _7| T
(2.10) (b w) = () e (),

3F |2 z? 1

nf2o— g (2L

(2.11) 57 (1) = (4mt)” (G )

Since we have also F} (400, z) = 0, we obtain for j # k, x # 0,

(212) ij(ﬂ,l') :/’— (47Tt) /26 4t itz dt

o0
7l
= —xjxk/ s x| e 048 | T x| 2s 2 dsm /2
0
|[?
= —x w3 /7r s e~ dsm /2,
0
ie. for j #k,
. 7|z|?
(2.13) / 62’”56_”|§‘2§j§k|§|_2d§ = —xjxk|x|_”_2/ s 2e 3 dsm 2,
n 0

For 7 = k, we have

1 1/4m 12 of2 .1']2 1
2.14) F,.(— = 4dt)™" 77———dt
Q1) Byl = [ m) e - )

m|z|? 1 mlzf?
= —a5|x| 7" s"2e~ dsn 2 4 —|x|™" 53 le s dsm 2,
0 2 0
so that

@15) [ et e g

2 A 2 1 . 2
= —xj|z|™" / s"2e dsn" +§]x\”/ 53 te S dsm 2,
0 0
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As a consequence, for t > 0,5 # k, we have

no|z|> _, 5 T

2.16 Fj(t, o) = —y(1+ =, =g /2
( ) ik(t, ) (1 + 20 At )™ |z |2
and

nolz?, ., T3 I P R |
2.17 Fi(t,o)=—y(1+ =, = )n 2L _ 4 _y(=, —)p "2 —
( ) ](,Z’) ’Y( +27 At ),ﬁ ‘x|2+n+27(27 4t> ‘l’|n
As a result, we have indeed, with a > 0, j # k,

iz —mwa"1|€|? —

(2.18) (R; Ryuq)(z) :/ et eI 6 €| g

n iral/2zE _—m|€|? -
(2.19) e / 2ime! st =l g e |2

" 1
(2.20) =a /2ij(E,al/2x)

n

(2.21) = —zz]z| " 2y(1 + §,a7r|x|2)7r_”/2,
and for j =k,

222) (Ru)(e) = [ e elie g

1
(2.24) = 0B ()

1
g,aw|x|2)7f”/2 + §]x| "fy(ﬁ ar|z?)r~2.0

Theorem 2.3. Letn > 1 be an integer and A = Zlgjgn 3; be the standard Laplace
operator on R™. Fort >0, we define the Oseen matrix operator

— —a2la| (14

(225) Q(t) - Afl(V ® V)@tA - ([ - P)etA - Ail(axj ® axk)lgj’kgnetA.

The operator Q(t) is the Fourier multiplier by the matriz Q(t, &) = €| 2(£@€)e 4l
and is given by the convolution (w.r.t. the variable x ) with the matriz (Fy(t, x))lgj,kgn

where

. 2 n |z|? 2
(226)  fori £k Falt.x) = —nfal (14 5 EDypoe

2 1 n |z|?
29 I — 2 —n—2 1 E ﬂ —n/2 - —n 0 12N, _—n/2
221)  Eylt,w) = el (4 5, a2 g el B,
n |z|? fn/21 —n—2(]..12 2 2)..1—2 —nj2 2l

(2.28) Fj(t,z) = 7(5, E)W §|:1:| (Jo]* = na?) + o3|z 7> (4mt) e ar .
Ont > 0, the functions Fjj, are real analytic functions of the variable t=122 multi-

plied by t="/%. We have also

1
(2.29) Fip(t,x) = (47Tt)_"/2ij(E,x(47rt)_1/2),
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. n— o 7rn/2
and with [S"™1| = 13(”/2),
(2.30)  |Fu(t,z)| < |:c|—“”+1 |Fj(t,z)| < ( il + =) (4mt)™"?
' = |Sn=1) IS =Mt
Moreover we have
. 2 xixp _ _l= n |.1'|2
2.31 k, Fi(t,r) = ———="L"(4rt) ™ 2e a0 | F(1;2 + —;
( ) fOT‘];é, ]k(?x) n+2 4t(7r) € 11(a+274t)
and
2 2
Tj (4 py—nj2_— L2 n_ |zl
2.32) Fii(t,x) = — R AT WL LAl
(082) Fyylt,) =~ T (amty e ¥ R (1324 5 B
1 n e n |zf?
—(4nt (L1 + = —).
+n<ﬂ->26411(7+274t>
The proof is an immediate consequence of (2.16), (2.17), (2.6). O

Remark 2.4. This theorem provides a direct proof, using special functions, of the
estimates established in a more general context in [4] as well as those stated on page
27 of [6].

Remark 2.5. We get easily from the first part of the previous theorem that the
kernel of the operator I — P, which is the matriz Fourier multiplier |£]72(£ @ &),
is the singular integral given by the (principal-value) convolution with the matriz

(fik(z)) where

: —n— LRp— —n— n
(2.33)  forj #k, f(a) = —zjzy|z[ T+ 57 2= —ajuyla|

S

(2.34) fis(@) = a7 2|2 = naf)|S"7H 7 + 7 o ().

We note also that the functions gjx = fjx —n~ ;100 are homogeneous of degree —n
on R™\{0} with integral 0 on S™™! so that the principal value

(T, p) = lim gix(z)p(z)dz

O+ Jjafze

actually defines a homogeneous distribution Tji, of degree —n on R™ ([5]).

3. APPENDIX

The Fourier transformation. The Fourier transform of a function w in the Schwartz
class . (R") is defined by the formula

(3.1) u(§) = /e‘Qimgu(x)dx,

and it is an isomorphism of . (R") so that u(z) = [e*™q(¢)d¢. That isomor-
phism extends to an isomorphism of the temperate distributions .’/(R") via the

duality formula (T, ¢) 1.9 = (T,¢) 9 . The Fourier transform is also a unitary
transformation of L?(R").
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The logarithm of a nonsingular symmetric matrix. The set C\R_ is star-
shaped with respect to 1, so that we can define the principal determination of the
logarithm for z € C\R_ by the formula

(3.2) Logz:j{ %
2 €

The function Log is holomorphic on C\R_ and we have Logz = Inz for z € R".

and by analytic continuation €% = z for z € C\R_. We get also by analytic

continuation, that Loge® = z for |Im z| < 7.

Let T, be the set of symmetric nonsingular n x n matrices with complex entries
and nonnegative real part. The set T, is star-shaped with respect to the Id: for
A € T, the segment [1,A] = ((1 —t)1d +tA)t6[0,1]
metric matrices with nonnegative real part which are invertible, since for 0 <t < 1,
Re ((1 —¢)Id+tA) > (1 —¢)Id > 0 and for t = 1, A is assumed to be invertible.
We can now define for A € T

is obviously made with sym-

1
(3.3) Log A — / (A= D)(I+ A1) dt.

0
We note that A commutes with (I + sA) (and thus with Log A), so that, for 6 > 0,

1

iLog(AJrel) = /1(I+t(A+0[—I))_ dt

do

_ /1(A+ O — I)t(I+t(A+ 61— I))_th,

and since %{(I—i—t(A—i—@[—I))_l} = —(I—i—t(A—l—QI—I))_Q(A—i—é’l—l), we obtain
by integration by parts d% Log(A + 0I) = (A+ 0I)~!. As a result, we find that for

0 >0,A € T, since all the matrices involved are commuting,

% ((A + 91)—1€L0g(14+9])) _ 0’

so that, using the limit # — 400, we get that VA € T, ,V0 > 0, elos(A+0D) — (A40T),
and by continuity

(3.4) VAeT,, 4= A which implies detA = etraccloes
Using (3.4), we can define for A € T, using (3.3)
(35) (det A)_1/2 _ e—%trachogA _ |det A|—1/2e—%lm(trachogA)‘
e When A is a positive definite matrix, Log A is real-valued and (det A)~1/2 =
| det A|71/2.
e When A = —iB where B is a real nonsingular symmetric matrix, we note

that B = PD'P with P € O(n) and D diagonal. We see directly on the
formulas (3.3),(3.2) that

Log A = Log(—iB) = P(Log(—iD))'P, traceLog A = trace Log(—iD)
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and thus, with (p;) the (real) eigenvalues of B, we have Im (trace Log A) =
Im 7, i, Log(—in;), where the last Log is given by (3.2). Finally we get,

Im (trace Log A) = —— Z sign p; = —— 31gn B
l<]<n
where sign B is the signature of B. As a result, we have when A = —iB, B

real symmetric nonsingular matrix
(3.6) (det A)™Y2 = | det A|7H/2!5 518n(4) — | det B| /2 sien B,

Proposition 3.1. Let A be a symmetric nonsingular n X n matrix with complex
entries such that Re A > 0. We define the Gaussian function va on R"™ by va(z) =

e~™A2)  The Fourier transform of va is
(3.7) UA() = (det A)~H/2emmATIES),

where (det A)~Y/2 is defined according to the formula (3.5). In particular, when
A = —iB with a symmetric real nonsingular matriz B, we get

Fourier(¢"™(5%) (¢) = 0775(¢) = | det B /%' sen BeintB e

Proof. Let us define T? as the set of symmetric n X n complex matrices with a
positive definite real part (naturally these matrices are nonsingular since Az = 0 for
x € C" implies 0 = Re(Ax,7) = ((Re A)x, z), so that T3 C T,).

Let us assume first that A € T7%; then the function v, is in the Schwartz class
(and so is its Fourier transform). The set Y% is an open convex subset of C("1)/2
and the function Y% 3 A +— v;(€) is holomorphic and given on T* N R"1/2 by
(3.7). On the other hand the function T% > A — g traceLog Ao —m(ATIEL) g al50
holomorphic and coincides with previous one on R*"+1/2 By analytic continuation
this proves (3.7) for A € T7.

If A e YTy and p € L(R"), we have (U4, p) 9 .» = [va(z)p(x)dr so that
T, > A — (va,) is continuous and thus (note that the mapping A — A~! is
an homeomorphism of Y ), using the previous result on 1%,

1 —
(va,¢) = lim <UA+61,¢> = lim [ e ztecetosteomnlAred 68 o ) g

e—04

(by continuity of Log on T4 and domin. cv.) = /6; trace LOgAefﬂA_lg’@gD(zf)df,
which is the sought result. 0

Some standard examples of Fourier transform. Let us consider the Heaviside
function defined on R by H(x) = 1 for x > 0, H(x) = 0 for x < 0. With the notation
of this section, we have, with dy the Dirac mass at 0, H(z) = H(—z),

o <> — 1 1 ~

H+H=1=6, H-H=sgn,  — ——25(¢) = Dsign() = Esigné
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so that f(s?g\nf — #pv(l/f)) =0 and s/lg\nf — %pv(l/ﬁ) = cdy with ¢ = 0 since the
lhs is odd. We get

(3.8)  sign(§) = —pv>

1]

1 1 1

it & T 2 ur
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