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Introduction

The equations of motion of an incompressible, Newtonian fluid —ugwealled

Navier-Stokes equationshave been written almost one hundred eighty years

ago. In fact, they were proposed in 1822 by the French engineer C. M. L. H.

Navier upon the basis of a suitable molecular model. It is interestimipserve,

however, that the law of interaction between the molecules @istliby Navier

were shortly recognized to be totally inconsistent from the playsioint of view

for several materials and, in particular, for liquids. It was onlyrenian twenty

years later that the same equations were rederived by the twentyasixolge

G. H. Stokes (1845) in a quite general way, by means of the theory of continua.
In the case where the fluid is subject to the action of a body fgicéhe

Navier-Stokes equations can be written as follows
ov
— 4+ v-Vo=vAv+Vp+ f
ot (0.1)

divv=0
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wherev = v(z,t) is the velocity field evaluated at the pointe €2 and at time
t € 10,77, pp is the pressure fieldy is the constant density of the fluid, and
(> 0) is the coefficient of kinematical viscosity. Finall§} denotes the relevant
geometrical domain where the spatial variables are ranging. efidrer it will
coincide with the region of flow for three-dimensional motiong.( Q C IR?),
while it will coincide with a two-dimensional region, in case ofape flows
(Q C IR?).

To the equations (0.1) we append fhéial condition: *

v(z,0) =vg, € (0.2)
and theboundary condition
v(y,t) =0, y€0Q, t>02 (0.3)

In the case wher&) extends to infinity, we should impose also convergence
conditions onv(z, t) (and/or, possibly, op(z,t)) when |z| — oo.

Several mathematical properties for system (0.1) have been deep$tiinve
gated over the years and are still the object of profound researtiemsever,
after more than one hundred seventy years from their formulatieni-aunda-
mental Problem(F'P)related to them remains still unsolved, that is:

Given the body forcg and the initial distribution of velocity, (no matter
how smooth), to determine a corresponding unique regular solatjent), p(z, t)
to (0.1) — (0.3) for all timest > 0.

So far, this problem is only partially solved, despite numerous tsffby
mathematicians and despite being viewed as an “obvious truth” by enginee
All this adds more weight to the following profound consideration dueito S
Cyril Hinshelwood, see Lighthill (1956, p. 343)

Fluid dynamicists were divided into hydraulic engineersovabserve what
cannot be explained and mathematicians who explain thimgfscennot be
observed

One of the aims of this article is to furnish an elementary presentatf
some of the basic results so far known {@P). In Section 1, we shall discuss
the main features of system (0.1) and describe the main difficultietedeta

lwithout loss of generality, we can takeas initial time.
2For simplicity, we shall consider the case of homogenemsslip conditions.
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it. Successively, following the classical methods of Leray (193484th) and
Hopf (1951/1952), we introduce the definition weak solutionto (0.1)-(0.3)
and study some of the related properties (Section 2). These solufiynsap
major role in the mathematical theory of Navier-Stokes equafian that they
are the only solutions, so far known, which exist falf times and without
restrictions on the size of the datén Section 3 we shall show the existence of
a weak solutionfor all timest¢ > 0. Uniqueness and regularity of Leray-Hopf
solutions will be presented in Sections 4 and 5, respectively. Duretpdrticular
form of the nonlinearity involved in the Navier-Stokes equatiohs study will
naturally lead to the functional clads"” = L"(0,T; L°(Q)), n/s + 2/r = 1,

s > n, 2 such that any weak solution belonging 6" is unique and regular.
In view of this result, we shall see that every weak solution in dsi@n two
IS unique within its class, and that it possesses as much space-guiarity
as allowed by the data. Since it is not known if a weak solution inedsion
three is inL*", it is not known if these properties continue to hold for three-
dimensional flows. However, “partial regularity” results areitalde. To show
some of these latter, we begin to prove the existence of more regpliations
in Sections 6. This existence theory will lead to the celebrateéoféme de
structure” of Leray, which, roughly speaking, states that everykvgsdution
is regular in space and time, with the possible exception of a seimastl

of zero 1/2-dimensional Hausdorff measure. Moreover, defining aefitiihe
t; € I anepoch of irregularityfor a weak solutiorw, if v is regular in a left-
neighborhood of; but it can not be extended to a regular solution afteme
shall give blow-up estimates for the Dirichlet normfat any (possible) epoch
of irregularity. In view of the relevance of the functional cldss’, in Section 7
we will investigate the existence of weak solutions in such a clagegcifically,
we shall prove the existence of weak solutiongliit, at least for small times,
provided the initial data are given in Lebesgue spakgsfor a suitableg. To
avoid technical difficulties, this study will be performed for the case- R"
(Cauchy problem). As a consequence of these results, we shall enlardashe c
of unigueness of weak solutions, to include the case n. In addition, we
shall give partial regularity results of a weak solution belongind.t¢°. The
important question of whether a weak solutionZitr™ is regular, is left open.

3n denotes the space dimension.
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1 Some Considerations on the Structure of the Navier-
Stokes Equations.

Before getting involved with weak solutiors la Leray-Hopf and with their
regularity, we wish to emphasize the main mathematical diffiesiltelating to
(FP). First of all, we should notice that the unknowngp do not appear in
(0.1) in a “symmetric way”. In other words, the equation of consémwaof
mass isnot of the following form

dp

E = G(p,'v).

This is due to the fact that, from the mechanical point of view, the pregdays
the role ofreaction force(Lagrange multiplier) associated with the isochoricity
constraint diw = 0. In these regards, it is worth noticing that, in a perfect
analogy with problems of motion of constrained rigid bodies, thesuresfield
must be generally deduced in terms of the velocity field, once thierldihs
been determined. In particular, we recall that the fig{d, ¢) can be formally
obtained —by operating with “div” on both sides @F.1,)— as a solution of the
following Neumann problem

Ap=div(v-Vv—f) inQ
(1.1)

op
o —(vAv + f) -n atof

wheren denotes the unit outer normal &82 *.

Because of the mentioned lack of “symmetry™udre p, the system (0.1) does
not fall in any of the classical categories of equations, even tinoiga sense,
it could be considered close to a quasi-linear parabolic system. rikeless,
the basic difficulty related to problem (0.1)—(0.3) does not arise fraenladlok
of such a symmetry but, rather, from theupledeffect of thelack of symmetry
and of thepresenceof the nonlinear term. In fact, thg"P) formulated for any
of the following systems

ov

— =vAv+Vp+

ot pts (0.7)
divo =0

“From this it is clear that to prescribe the values of the pnesat the bounding walls or at
the initial timeindependentlpf v, could be incompatible with (1.1) and, therefore, couldden
the problem ill-posed.
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%—I—U-V’U:I/A'v—l—f (0.2
obtained from (0.1) by disregarding either the nonlinear tefmlf)] or the
isochoricity condition {0.1”)] can be completely solved. While f@0.1’) this
solvability will be clear when we shall consider the solvability 6fP) for (0.1),
the solvability of (0.1”) is a consequence of an interestiagpriori estimate
discovered by Kiselev and Ladyzhenskaya (1957) and based on a maximum

principle that we would like to mention here. Setting
u(z,t) =v(z, t)e ™ a>0
from (0.1”) we obtain
1 Ou?
2 0t
Consider a pointP = (z,t) of the cylinderQ x [0, T] whereu? assumes its

maximum. If such a point lies either on the bottom face of the cylinder, @t
t = 0) or on its lateral surface .e., atz € 0f2) we have

max u?(z,t) < u?(7,0) < max v5(z). (1.3)

+3v- VU’ +au’ =vAu-u+ f-ue (1.2)

If, on the contrary,P is an interior point of the cylinder or lies on its top face

we find
2
ai Z 0, vu2 — 0, ~
ot evaluated at (7,t) = P.

—u-Au=|Vul|? — 1Au? >0
Therefore, from (1.2) we deduce
au?(3,1) < £(7,7) - u(@, e " (1.4)

As a consequence, from (1.3), (1.4) we prove the follonangriori estimate
holding for all (sufficiently regular) solutions to syste(t1)”

oo, 0)] < e { -~ maxle | f(a, ) + max oo} (@5)

Notice that (1.5) isndependenof the spatial dimension. Unfortunately, nothing
similar to (1.5) is so far known for system (0.1) in dimension 3. Neveslas
we shall show later on, in dimension 2 the globat.( for all times) estimates
that we are able to derive will suffice to ensure the existence and uregaef

a regular solution for (0.1).
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2 The Leray-Hopf Weak Solutions and Related Prop-
erties.

We shall begin by giving the definition of weak solution in the senseerhy-
Hopf. To this end, we need to introduce some notation.LBy2) andW™4((2),
1<qg<o0o,m=0,1,... we denote the usual Lebesgue and Sobolev spaces,
respectively. The norm i/ is indicated by| - |, Form = 0, it is
W% = [1 and we set| - [o, = | - |l Whenever we need to specify the
domain D on which these norms are evaluated, we shall wyfite||,,, , p. We
denote bylV;"?(§2) the completion in the normj - ||, Of the space’;°($2)
constituted by all infinitely differentiable functions with congbasupport in2.
The dual space o’y will be denoted by~ ,

Let ®

D(Q)={yY € Cr(Q): divyp =0in Q}.

We defineH, = H,(2) as the completion aD(2) in the Lebesgue spadé(2).
Moreover, we denote byi}(Q2) the completion ofD(f2) in the Sobolev space
W4(Q). Forq = 2, we shall simply writelf and H', respectively. It is well
known, see Galdi (1994, Chapter lll), that(¥f has a bounded boundary which
is locally lipschitzian, or ifQ) is a half-space, the following characterizations for
H, and H; hold, for1 < ¢ < oc:

Hy(Q)={ue LI(Q): divu=0, u-n|y, =0}

H)(Q) = {u e WH(Q) : divu =0, ul,, =0}

where the values at the boundary have to be understood in the trace sense.
Furthermore, ifQ2 is of classC!, the following Helmholtz-Weyl decomposition
holds

L1(Q) = H, () & G,(Q) (2.1)

where
G,(Q)={ue LY Q) : u=Vp, for somep € L, .() with Vp e LI(Q)}

(we setG' = G,). The projection ofL? onto H, is denoted byP, (= P, for
q = 2). In the case; = 2, H andG are orthogonal subspaces bf, and (2.1)
holds for any open se®.

SIf X is a space of scalar functions, we denoteXyhe space constituted by vector or tensor
valued functions having components_n
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For T € (0, 00] we setQ)r = Q x [0,7) and define
Dr = {(P € CSO(QT) : leQO(.]?,t) =0in QT}

Notice that forep € Dr, ¢(x,0) need not be zero. Far, b vector functions in
Q we put

(@b)= [a-b, |a]:=(a a)
Q

Oa; Ob; 1
3 ) _ /2
(Va,Vb) = Z/ﬂaxj 5o Ivale=(Va,vay®

If we need to specify the domaiR on which these quantities are evaluated, we
shall write

(5)ps |- [l2.p-

Moreover, for a given Banach spadg with associated norrjj - ||x, and
a real interval(a, b), we denote by.?(a, b; X) the linear space of (equivalence
classes of) functiong : (a,b) — X such that the functional

1/q
([Iroga) i 1sq<x

esssup [[f(t)[x if g=o0
te(a,b)

[ f[l La(apx) =

is finite. It is known that this functional defines a norm with respect toch
Li(a,b; X) becomes a Banach space (Hille and Phillips 1957, Chapter IlI). Like-
wise, forr a non-negative integer anda real interval, we denote by"(I; X)
the class of continuous functions fromto X, which are differentiable id up
to the orderr included. Finally, if/ is open or semi-open, bBC(I; X), we
denote the subspace 6f(1; X') such thatsup||u( )| x < co. Depending onX,

these spaces might share several propertles with the “usual” Lebepgues
Li(a,b) and space€’(I), and we refer to the monograph of Hille and Phillips
for further information.

Assume noww(z,t),p(z,t) is a classical solution to (0.1)-(0.3j. Then,

8For instancey is one time differentiable i and twice differentiable iz, while p is one
time differentiable inz. Moreover,v assumes continuously the initial and boundary data.



8 Navier-Stokes Initial-Boundary Value Problem.

multiplying (0.1); by ¢ € Dr and integrating ovef2., we find

/Ooo { ('v, %—f) UV, V) — (v Vo, (p)} di

_ _/O‘X’(f, @)dt — (v, p(0)),

for all ¢ € Dr.

(2.2)

Conversely, ifv(x, t) is a vector field satisfying (2.2), and having enough smooth-
ness as to allow for integration by parts ogEf, in some sensé,we easily obtain

/oo (6—U+U~VU—I/A’U—f,h(t)1/J>dtZO
o \ Ot

for all h € C§°((0,7")) andvy € D(Q2). Therefore, for every suctp

(a—v—l—v-V'v—uAfv—f,v,b> =0,
ot

and by a well known result of Hopf (1950/1951), see Galdi (1994, Lemma
[1.1.1), we conclude the validity of (0.1) for some pressure fig{d, ¢). How-
ever, it is clear that ifu(z,t) is a solenoidal vector field that satisfies (2.2) but
is not sufficiently differentiable, we camot go from (2.2) to(0.1); and it is
precisely in this sense that (2.2) has to be considered asdhlk formulatiorof
(0.1);.

Remark 2.1 1t is simple to give examples of solenoidal vector fields which
satisfy (2.2) but which do not have enough smoothness as to \@rify;, no
matter how smoothf andwv, are. Take, for instance

v(z,t) = a(t)Vo(z), Aoc=0in Q (2.3)

wherea(t) has no more regularity than the local integrability iy 7") with a(0)
finite. Since
v- Vo = 1V(Vo)?

and divo = 0, we deduce thab(z,t) is a non-smooth solenoidal vector field
satisfying (2.2) withf = 0 andv, = a(0) V. Notice that, since is harmonic,
v IS analytic.

"For instance, in the sense of generalized differentiation.
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We wish to give a generalized meaning to the solenoidality condition-
and to the boundary condition (0.4). This will be accomplished, for instance,
if we require that, for almost all times € [0,77], v(-,t) belongs toH'(1).
Moreover, to ensure that all integrals in (2.2) are meaningful, we reguyire
ve L20,T; HY).

These considerations then lead to the following definition of wealtisoi,
due to Leray (1934a, 1934b) and Hopf (1951/1952).

Definition 2.1 Let vy € H(Q), f € L*(Qr). A measurable functiomw :
Qr — IR™, n = 2,3, 8is said aweak solutionof the problem (0.1)-(0.4) i)y
if

a)veVp=L*0,T; H)NL>(0,T; H);
b) v verifies (2.2).

If £ € L*(Qr) for all T > 0, v will be called aglobal weak solutiorif it is a
weak solution inQr for all T > 0.

Remark 2.2 In a) we have included the condition thate L>(0,T; H)
which, a priori, does not seem to be strictly necessary. However, on one hand,
this condition ensures that the kinetic energy of a weak solution is&skbe
bounded in the time interval, 7], and this is a natural request from the physical
point of view. On the other hand, excluding such a condition would resut in
definition of weak solution too poor to allow for the developmentai further
relevant property. And last, but not least, we shall prove that ldees of weak
solutions is not empty, see Theorem 3.1.

Remark 2.3 Definition 2.1 is apparently silent about the pressure field. Later
on (Theorem 2.1) we shall see that to every weak solution we can ahsagsiate
a corresponding pressure field.

Our next objective is to collect a certain number of properties of veedik-
tions which will eventually lead, among other things, to a definition eajent
to Definition 1.1. The following result is due to Hopf (1951/1952, Satz 2.1); see
also Prodi (1959, Lemma 1) and Serrin (1963, Theorem 4).

Lemma 2.1Let v be a weak solution if2;. Thenv can be redefined on a
set of zero Lebesgue measure in such a way#hgte L*(Q2) for all t € [0,T)

80f course, the definition of weak solution can be given foy apatial dimensiom > 2,
but we shall be mainly interested in the physical intergstiases of two and three dimensions.
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and satisfies the identity

/: { (U’ %_f> —v(Vv, Vo) —(v- Vo, w)} dr

= [ (.00 + (1), 0(0) ~ (0(5), 9(5)),
) (2.4)
for all s €0,t], t < T, and allp € Dr.

Proof. It is clear that to show (2.4) for arbitrary € [0, ], it is enough to
prove it fors = 0. We begin to show that (2.4) holds fer= 0 and almost every
t€[0,7). Letd € C*(IR) be a monotonic, non-negative function such that

{1 if ¢ <1

0(¢) = ,
0 if&E>2

For a fixedt € [0,7") andh > 0 with t + h < T" we set

0,(7) = 6 (T_—Z“’> .

Notice that
@n <Chl, C>0,
dr
(2.5)
t+h d@), B
Choosing in (2.2)p(z,t) asé,(t)e(x,t), we obtain
t+h 8S0
[ o { (0.58]) - 0. 70) —(’v-Vv,SO)Hf,SO)}dT
t+hd9
:—/ (7 p)dr — (vo, P).
(2.6)

Letting ~ — 0 in this relation and recalling Definition 2.1, we easily deduce that
the integral on the left-hand side of this relation tends to
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Let now investigate the behavior of the integral at the right-hand aid@.6).
In view of (2.5) and of a) of Definition 2.1, we have for each fixed

l(h,t) =

[ o), ptrar + 000, 90)

[T i) — o), 90) + (7). 07) — (1)} dr

< cllel (1" [ ote) - o) aar)

s () = Ol (10 [ ot

TE[L,t+h]

< Cllel: (17" fotr) = wlo)a

M t) — .
M. [le(®) = ()]

Denote byL(v) the set of all those € [0,7) for which

. [t
}L%h ) |lv(T) — v(t)|2dT = 0.
As is well known from the theory of Lebesgue integration (Titchmafd$64,
§11.6, Hille and Phillips, 1957, Theorem 38.%)v) can differ from[0,T") only
by a set of zero Lebesgue measure. Therefore, since

pm max le(t) — p(7)[|l2 =0,

we obtain
lim ¢(h,t) =0, forall t € L(v),
h—0

and so identity (2.4) follows fos = 0 and allt € £(v). We setE; = [0,T) —
L(v). Moreover, by a) of Definition 2.1, there exists a constant> 0 and a
setFE, C [0,7") of zero Lebesgue measure such that

|lv(t)|l; < M, forallte[0,T)— Es. (2.7)

PutE = E,UE, and pické € E. Then, there exists a sequereg} C [0,7)—F
converging tot ask — oo. By (2.7), ||v(tx)]l2 < M and so, by the weak
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compactness of the spacHswe find Uz € H(f2) such that
klim (v(ty) — U, o) =0, forall ¢p € D(Q).

Define
v(z,t) iftel0,T)—FE
v(z,t) =
(Notice thatv*(z,0) = vo(z).) Clearly,v* € L*(Q), for all t € [0,7). Fur-

thermore, evaluating (2.4) along the sequefigé associated td/; and letting
k — oo it is easy to verify the validity of the following statements:

1) v* satisfies (2.4) for alt € [0,7);
2) U, does not depend on the sequektg.

The lemma is then completely proved.

As a corollary to this result, we have

Lemma 2.2 Let v be a weak solution ifi2;. Thenv can be redefined on a
set of zero Lebesgue measure in such a way that it satisfies the identity

/Ot (—u(Vv, Vap) —(v - Vo, )} ds
(2.8)

- _/Ot(f,t/;)ds + (v(t), ) — (vo, ),

for all t € [0,7) and all ¢» € D(Q2). Furthermore,v is L? weakly continuous,
that is,

lim (v(t) — v(ty), u) =0,

t—to

for all t, € [0,7) and allu € L*(9).

Proof. We put in (2.4)s = 0 and choosep(z,t) = 0,(t)¥(z), whered,
is the function introduced in the proof of the previous lemma dnd D(12).
Noticing thate = 1 in t € [0,t], (2.8) follows at once. To show the* weak
continuity, we observe that for any fixegd € [0,7") from (2.8) it follows that

Ve >0, 3d(e) >0 : |t —to] <d = |(v(t) — v(to),¥)| <&,
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for all ¢ € D(Q2). It is clear that this property continues to hold (by density)
for all w € H(Q). Let nowu € L*(Q2). By the Helmholtz-Weyl decomposition
(2.1) we may write

u=w+Vyq, we H(Q), Vge G(Q)
and so, since € H((2), we have

(v(t) — v(to), w) = (v(t) — v(t), w),
and the lemma follows.

Remark 2.4 Lemma 2.2 tells us, in particular, the way in which a weak
solution assumes the initial data, namely, in the sense of the iifeadnvergence.

Throughout the rest of these notes, we shall assume that every weak solution
has been modified on a set of zero Lebesgue measure in such a way that it
verifies the assertions oLemma 2.1and Lemma 2.2

Our next concern is to investigate if and in which sense, we can ass@i
“pressure field” to a weak solution. Let us first assume thagt is a classical
solution to (0.1)-(0.4). Then, multiplyin().1); by x € C;°(2) and integrating
by parts oveK); we formally obtain

/Ot {—v(Vv,Vx) —(v-Vu,x) + (£, x)} ds
(2.9)

:/Ot(p,divX) + (v(t), x) — (v0,X)-

In the next theorem, we shall show that to any weak solutian Q2 we can
associate a functiof(t) € L*(w), t € [0,T), w CC €, such that

/Ot {—v(Vv,Vx) —(v- Vo, x) + (f,x)} ds
= (P(t),divx) + (v(t), x) — (vo, X),

for all x € C7°(2). We wish to emphasize that, using only (2.8) and the local
regularity property of weak solution, in general, we caot write

(2.10)

P(,t)= /Otp(-, s)ds, for somep € L},.([0,T)), (2.11)
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due to the fact that a weak solution reagriori only a mild degree of regularity
in time. To see this, let us consider the vector fielgiven in (2.3) and choose
a(t) € C([0,T)) buta’ ¢ Lj,.([0,T)). By a straightforward calculation we find
that

[ 1098, 9x) (@ Vo.x)}ds — (B(0). ) + (0. 3)
—1 "2(5)((Vo)2, divx)ds + (a(t) — a(0)) (e, divx)
and therefore (2.10) is satisfied wigh= 0 and
p=if ' 2(5)(Vo)2ds + (alt) — a(0))o.

Sinced’ ¢ L},.([0,T)), P does not verify (2.11); see also Remark 2.6.

loc

Theorem 2.1Let v be a weak solution if2r. Then, there exists a scalar
field P : Qr — IR with

P(t) € L*(w), forallte[0,T)andw CC Q,

verifying (2.10) for allx € C;°(?) and all t € [0,7"). Moreover, ifw satisfies
the cone condition, there exiét= C(t,w) € R andC; = Cy(w) > 0 such that

I1P(t) = Cllaw <O [ (1V0(5) ot MIV0(5) 2 + 1£(6)la) ds M}

for all t € [0,T"), where

M = ess sup |[v(s)]2w

s€[0,t]
and
1 if n=2
=
1/2 if n=3
1 if n=2

3/2 if n=3.
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Proof. Let us consider a sequence of bounded “invading domajfs’},
that is, (), is bounded for eack, and

Qk+1 D) Qk, Q= U Qk
k=1

Without loss, we may assume th@j, satisfies the cone condition for eaéh
For fixedt € [0,7"), consider the functional

Fx)= [ {-(Vo,Vx)~ (0 Vo, )+ (.30} ds— (0(8), %)+ (00, ),
x € W5 ().

It is clear thatF is linear functional o# y%(2;). Moreover, using the Schwarz
inequality and the following ones (seey., Galdi, 1994, Chapter II)

lulls < 274l ?Vull?, n=2,
(2.12)
3/4 1/4 3/4

lulls < (5%) 7 lully* [ Vul3™, n=3,

it is easy to see that

F001 < el { [ (IVoll+ M2 Vol £l) ds+ M} @213)

where
M), = ess sup [|v(s)]|2,0,-
s€[0,t]
As a consequencet is a continuous linear functional oW (€2;,) which, by
Lemma 2.2, vanishes ali*(€2;,). Thus, sincd, is bounded for alk, by known
results (Galdi, 1994, Corollary 111.5.1) there exis = P;(t) € L*(€;) such
that
F(x) = (P, divy), forall x € W*(Qy).

Likewise, we show that there existd = P (t) € L*(Q) such that
F(x) = (P, divy), forall x € Wy*(Q,).

Since, forxz € Q;, we havePy(x,t) = Pi(z,t) + ¢(Q1, s, 1), ¢(Q1,Q,t) € R,
we can modifyP, by a function of time so thaf, = P; in ;. By means of

15
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an induction argument, we then prove the existence of a funétioflr — R
with P € L?(Q), for all k € IN. ® Furthermore,

F(x) = (P,divx), forall x € Wg*().

and, again by Galdi (1994), Corollary I11.5.1, and (2.13), we have

t
IP@la0, < Co{ [ (IVellz, + MEIVolZa, I Fl20,) ds + M}

(P(t)v 1)Qk =0
which proves the theorem.

Remark 2.51f 2 has a bounded boundary satisfying the cone condition, one
can show that the field” introduced in the previous theorem can be chosen
to belong toL>(0,T; L*(2)). In fact, in such a case, assuming some more
regularity on€2 one shows that relation (2.11) holds, see Sohr and von Wahl
(1986).

Remark 2.6 In a recent paper, J. Simon (1999) has shown that, when
2 is bounded, there exists at least one weak solution satisfying (i),
correspondingp € W—1>(0,7; L% .(2)), if Q has no regularity, and with.

p € W=b=(0,T; L*(Q)), if Q is locally lipschitzian. For this result to hold
it is sufficient to assumg’ € L?(0,T; W~12(Q)).

We wish now to prove a converse of Lemma 2.2, that is, any funatienV/
(see Definition 2.1) which satisfies (2.8) for alE [0, 7') and allyy € D(2) must
also satisfy (2.2). This will lead to an equivalent formulation afak solution
involving identity (2.8) instead of (2.2). We begin to show thab i€ V solves
(2.8) for allt € [0, T) and allip € D(Q2), then it also satisfies (2.2) with

p(r,t) =y = Z'Vk(t)wl(x)v (2.14)

wherey; € C3([0,7T)). By the linearity of (2.8) ing, it is enough to show this
statement forNV = 1. Now, (2.2) withp(z,t) = v(t)y(z) and (2.8) can be
written in the following forms

[ A @)t = [ 0G0 - 2(0)9(0) 22)

9N denotes the set of all positive integers.
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and .
g(t) = /0 G(s)ds + g(0), te0,T) (2.8)

respectively, where

9(t) = (v(t), )
G(t) = {-v(Vv,V¥) - (v-Vuv,9) + (f,4)} € L1(0,T)

From Lemma 2.2 we already know th@2’) implies (2.8"). Conversely, from
classical results on Lebesgue integration (seg, Titchmarsh, 1964§11), one
shows that(2.8') implies (2.2). ** To complete the equivalence of the two
formulations, it remains to show that evepyc Dy together with their first and
second spatial derivatives and first time derivatives, can be appated in{r

by functions of the type (2.14). This is the objective of the following lemma

Lemma 2.3 Let €2 be an arbitrary domain inR", n > 2, and letT > 0.
Then, there exists a sequence of functiggs.} C D(2) with the following
properties. Givenp € Dr ande > 0 there are N = N(¢p,¢) € IN functions
Y € C§([0,T)), k=1,..., N, such that

dpn(t) _ Dplt)
ot ot

<&,
co(Q)

ax |len(t) = p(t)lloxe) + max

with ¢, given in (2.14). MoreoveRt), } can be chosen to be an orthonormal
basis in H(£2).

Proof. Let H™ = H™(Q2) be the completion ofD(f2) in the norm|| - ||,
of the Sobolev spac® ™?(Q2) and let{®,} be a basis ofi™ constituted by
elements ofD(Q). ¥ For arbitraryn > 0, let0 =t <t; <...<t,=T bea
partition of [0, 7] such that

lo(#) = @(t")lm <, 11" € [tros, ta] (2.15)
Denoting by(:, -),, the scalar product id{™ and setting
l

(pl(.]?,t) = Z((P7 (I)r)mq)r(x)a

r=1

0 G € C([0,T)), equation(2.2) is obtained from(2.8') after multiplying this latter by
~'(t) and integrating by parts.
UThjs is always possible, owing to the separability#®f™2,
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we have
Jim [l(t) — (1) . = 0, forall 1€ 0.7, (2.16)

and so, by the Schwarz inequality, we find for &l [t;_1, ty]
l01(t) = i (tr)[Im < [lo(2) — @ () lm < - (2.17)
Thus, from (2.15)-(2.17), fot € [tx_1, tx] and sufficiently large we find
lei(t) = @()llm < lls(t) = i(te)lm + lei(tr) — @(tr)llm
+lle(t) = @ (tr) lm < 3n.

Choosingm > n/2, by the Sobolev embedding theorem we conclude

max [|:(t) = (t)llc2(@) < Cn

with C = C(Q,m,n). Moreover, for allt € [0,T7, it is

o) op()
R H ot ot

=0,

l—o0
m

and so, by the same kind of argument used before, we show

op/(t) (1)

ot ot =0

co(Q)

lim max
l—00 t€[0,T]

To the sef{ &, } we can apply the Schmidt orthogonalization procedud@&?irthus
obtaining another systerfw), }, whose generic element is a linear combination
of ®,...,®, ¢ ={(r). SinceH™ is dense inH, it is easy to show thafi, }
satisfies all requirements stated in the lemma which, consequengyoved.

From what we have shown, we deduce the following result.

Lemma 2.4 A measurable functiom : 27 — IR" is a weak solution of the
problem (0.1)-(0.4) iM) if and only if

a) v eV

b) v verifies (2.8), for allt € [0,T") and all ¢ € D(Q2).
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Remark 2.7 Differentiating (2.8) with respect tband recalling thav € V7,
we find

%(’v(t), Y) = —v(Vo(t), Vi) — (v(t) - Vo(t),¥) + (f, 4) (2.18)

fora.a.t € [0,7) and ally € D(R). It is easily seen that the right-hand side
of (2.18) defines a linear, bounded functionaljne H'(f2). In fact, denoting
by F such a functional, by the Schwarz inequality and by (2.12) we have,

IF@) <Vl llolZ+1£112) ]2

, (2.19)
< c(|IVoll2 + [0l8Vol5) 14]l1.2

where
a=0p=1, ifn=2

a=1/2, B=3/2, if n=3.

Thus, denoting by ~*(2) the dual space of/*(Q2), for almost allt € [0,7),
there exist, € H~1(Q) such that

L]
dt
where (-,-) denotes the duality pairing betweéh~! and H'. Notice thatv,

is in H~! but not necessarily inlW~12. Moreover, by (2.18), (2.19) and the
assumptiorw € V., we find

(v, ) =—v(Vo(t), Vp) = (v(t) - Vo (t), ) +(F, %), ve €L7(0, T H (),

whereoc =2 if n=2ando =4/3 if n = 3.

(’U(t)ﬂb) = <vt7¢>7 1/J € HI(Q)a

Remark 2.8 The method of proof used for Lemma 2.3 enables us to give a
density result which will be used several times in the next sestido this end,
we recall standard facts concerning the theory of approximationraftions. Let
we L0,T;X),1 < qg<o0. ForT > h > 0, the mollifier wy, (in the sense of
Friederichs) ofw is defined by

wi(t) = /O " in(t — syw(s)ds (2.20)

where j,(s) is an even, positive, infinitely differentiable function with support
in (=h,h), and/ Jn(s)ds = 1. We have (see:.g., Hille and Phillips, 1957)
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Lemma 2.5Let w € L9(0,T;X), 1 < ¢ < co. Thenw, € C*([0,T]; X),
for all £ > 0. Moreover

lim [[wp, — wl|zeor,x) = 0.
Finally, if {w,} C L%(0,T; X) converges tav in the norm ofL4(0,7; X) then

Jim [|(wi)n — wpl[Larix) = 0.

We also have.

Lemma 2.6 D is dense inL?(0,T; H*(Q)).

Proof. Let {®,} C D(Q2) be a basis ofH! and letw € L?*(0,T;X).
Denoting by(-,-); the scalar product i#!, and setting

wyp(x,t) = Z(wh, ®,),P,(x),

r=1

we have
lim [lwy(t) — wi(t)1 =0, forall te[0,7] andh < T. (2.21)
—00
Clearly,w;, € Dr. By Lemma 2.5, for a givems > 0, there ish > 0
T 2
| lhen®) = w@) <

On the other hand, from (2.21) and the Lebesgue dominated convergencetheore
we have for all fixedh

T
llim |wi s (t) — wi @) = 0.
—00 J0

Thus the result follows from the last two displayed relations and tiaegle
inequality.

3 Existence of Weak Solutions.

The aim of this section is to prove the following existence theoremvedk
solutions.
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Theorem 3.1Let 2 be any domain inR"™ and let7T > 0. Then, for any
given
vo € H(Q), f <€ L*Qr),

there exists at least one weak solution to (0.1)-(0.3)4n This solution verifies,
in addition, the following properties

i) The energy inequality:

o)1 +2v [ IVe()lEdr <2 [ (o(r), £(r))dr + o], ¢ € [0,7]
E

i) Jimv(£) — voll2 = 0.

Proof. We shall use the so called “Faedo-Galerkin” method. {#f} C
D(Q2) be the basis off (2) given in Lemma 2.3. We shall look for approximating
solutionswv;, of the form

k
’Uk(&?,t) = chr(t)lpr(x)? ke IN; (31)
r=1

where the coefficients,, are required to satisfy the following system of ordinary
differential equations

d . k k
Cci]; + Zaircki + Z QisrChiChs = fr, T=1,...,k, (32)

i=1 i,s=1
with the initial condition
ckr(0) =Cor r=1,...k, (3.3)

where

A = V(V¢i7 V¢r)7 Qjsr = (7707, : V'I,bs, V¢T)7
fr = (fvwr)a CO?" = (v07¢r)‘

Sincef, € L?(0,T) forall r = 1,..., k, from the elementary theory of ordinary
differential equations, we know that problem (3.1)—(3.3) admits a uniqué@olu
cer € WH2(0,Ty), 7 = 1,...,k, whereT, < T. Multiplying (3.2) by c,,
summing overr and employing the orthonormality conditions ¢, } along
with the identity

(¢ - Vi, ¢p) =0, forall ¢ € D(Q),
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we obtain for allt € [0,7")

Jor®l + 20 [ [Vou(r)lBdr =2 [ (ou(r), F@))ar + osli (3.4

with vo, = v4(0). Since||vok|l2 < ||voll2, Using in (3.4) the Schwarz inequality
along with Gronwall's lemma, we easily deduce the following bound

t
||vk(t)||§+/0 IVou(r)|2dr < M, forallt € [0,T) (3.5)

with M independent ot and k. From this inequality it follows, in particular,
that |c,(t)| < MY? for all » = 1,...,k which in turn, by standard results on
ordinary differential equations, impli€eg, = T, for all £ € IN. We shall now
investigate the properties of convergence of the sequmgewhenk — co. To
this end, we begin to show that, for any fixed= IN, the sequence of functions

GO (t) = (va(t), 1b,)

is uniformly bounded and uniformly continuous ine [0,7]. The uniform
boundedness follows at once from (3.5). To show the uniform continuity, we
observe that from (3.2), (3.5), with the help of the Schwarz inequalidasily
follows that

G @)~ GP6) <5 [ (IVor(r) s + 1£(7)s)
° t (3.6)
+5,M2 [ Vo (7)]|2dr,

where
Sl = ||¢r||2a SQ = Iileag%{hpr(x”

Thus, using the Schwarz inequality into (3.6) and recalling (3.5), we readily sho
the equicontinuity ofG,(f) (t). By the Ascoli-Arzeh theorem, from the sequence
{G,(f) (t) }rew We may then select a subsequence —which we continue to denote
by {G\"(t)}xew— Uniformly converging to a continuous functig®™(¢). The
selected sequenc{eﬁ,ﬁr) (t) }rew May depend om. However, using the classical
Cantor diagonalization method, we end up with a sequence —again denoted by
{G(t)}en— converging toG™, for all » € IN, uniformly in te [0, 7). This
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information, together with (3.5) and the weak compactness of the gpaakows
us to infer the existence af(t) € H(f2) such that

lim (vg(t) — v(t),4,) = 0 uniformly in¢ € [0,7] and for allr € IN. (3.7)

k—o0

Let us now prove thaw,(t) converges weakly inL? to v(t), uniformly in
t € 10,77, that is,

Jim (v, (t) — v(t),u) =0, uniformly in ¢ € [0,7] and for allu € L*(Q).
(3.8)

By the Helmholtz-Weyl orthogonal decomposition (2.1), it is enotgtshow
(3.8) foru € H(S2). To this end, writing

00 N
u = Zur¢r = Zurwr + u(N)
r=1 r=1

and using the Schwarz inequality together with (3.5), we find
N
|(vi(t) — (1), w)| < D_I(vk(t) — v(t), urth,)| + [(vr(t) — v(t), u™))
r=1

N
<D llullo](vr(t) — (1), %,)] + 2M2 [u™]),.
r=1

Fore > 0, we chooseV so large that
[u™|, < e.

Further, by (3.6) we can pick = k(u, ) so that

§||U||2|(’vk(t) —v(t),%,)| <e,

and (3.8) follows from (3.7) and the last two displayed inequalities. idwv
of (3.5) we clearly havey € L>(0,T; H(?)). Again from (3.5), by the weak
compactness of the spaté(Qr) it follows the existence ob € L?(0,T; H*(2))
such that form = 1,...,n (with 9,, = 9/0x,,)

T T
lim [ (v,—v,w)ds =lim | (Op(ve—),w)ds=0, for all w € L*(Qr).

k—o0J0 k—o0J0
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Choosing in this inequalityw € Dy and using (3.8), it is easy to show that
v = . Thus, in particular, we find
T
lim [ (O (vr—v),w)ds =0, forallwe L*(Q7), m=1,...,n. (3.9)

k—00.J0

We wish now to prove that (3.8) and (3.9) imply tsigongconvergence of vy }
to v in L*(w x [0,7)), for all w cC Q. To show this, we need the following
Friederichs inequality see,e.g., Galdi (1994, Lemma I.4.2)Let C be a cube
in IR", then for anyn > 0, there existK'(n,C') € IN functionsw,; € L>(C),
i=1,..., K such that

r 2 KT 2 T 2
[} @B ede < 32 [ ote), wilide -+ [ [Vaw(@) B o
If we apply this inequality withw = v, — v and use (3.5), (3.7) we find

T
lim/ log(t) — v(t)|2 cdt = 0 (3.10)
k—00J0 ’
With the help of (3.8)-(3.10), we shall now show thatis a weak solution to

(0.1)-(0.3). Since we already proved that Vi, by Lemma 2.4, it remains to
show thatv satisfies (2.8). Integrating (3.1) frothto ¢ < 7" we find

/Ot {_y(vvk, V'lpr) —(ka . V’Uk, ¢T)} dS
(3.11)

= [ (w5 + (04(0). ) — (00,9,

From (3.8), (3.9) we at once obtain

lim (vg(t) — v(t),%,) =0, lim

t
k—o0 k—o0J0

(Vug(s) — Vo(s), v, )ds =0. (3.12)

Furthermore, denoting b¢' a cube containing the support ¢., we have

‘/Ot (v - Vg, ,) — (v - Vo, 1,)ds

(3.13)

< + ‘/Ot('v -V(vg —v),1,)cds| .

/Ot(('vk —v) - Vg, 1, )cds
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SettingS = meaéc\zb(x)\, by (3.5) we also have

t t /2, ot 1/2
[ (@i =) Vo, ,)d <5 ([ lloe —vlBodt) ([ 170e]3de)
t 1/2
<SM2 ([ or — vl .
O ,
and so, using (3.10), we find
= 0. (3.14)

lim
k—o0

[ (= v)- Vor,,)ds

Furthermore, we have

t
/ (v-V(vp —v),9,)cds| <
0

>

/ (Vg — v),v,%,.)cds
and sincev,,y» € L*(Q7), from (3.9) we deduce

lim
k—o0

/Ot('v -V(vg —v),1,)cds

~ 0. (3.15)

Therefore, passing into the limit — oo in (3.11), from (3.12)-(3.15) we con-
clude

[ -0, 98,) (- Vo,,)} ds
0 (3.16)

_ /OQ £.0,)ds + (v(1),9,) — (vo,%,).

However, from Lemma 2.3 we know that every functign € D(f2) can be
uniformly approximated irC?(Q2) by functions of the form

N
=Y 3. (z), NeN, v, €R.

So, writing (3.16) withy in place oft, we may pass to the limiv — oo in
this new relation and use the fact thatc V to show the validity of (2.8) for
all ¥» € D(Q2). We shall now prove the energy inequality (El). To this end, we



26 Navier-Stokes Initial-Boundary Value Problem.

shall take thdim inf ask — oo of both sides of (3.4). By the definition afyy,
the properties off, and (3.8) we deduce

tim { [ (0u7), £)dr + lowl3} = [ @), $)r + ool

k—o00

Moreover, by (3.8), (3.9) and a classical property of weak limits fine that

t t
timin {[on(t)3 +2v [ [Vou(r)[3dr} = 0@l + 20 [ [V0(r) 3dr
(3.17)
and (El) follows from (3.4) and the last two displayed relations.ni(&l) we
deduce at once
limsup [o(®)]f3 < [lvoll::

On the other handy(t) is weakly continuous irl.? (see Lemma 2.2), and so we
have
liminf [[o(¢)[[3 > [[voll3,

which implies
: 2 2
lim [o(#)[l2 = [[voll3-
This relation together with th&? weak continuity ofv allows us to conclude
lim o (t) — vol2 =0,

and the theorem is thus proved.

Remark 3.1 In the literature, one may find many different definitions of
weak solution (seeg.g., Lions, 1969; Masuda, 1984; von Wahl (1985)). The
one chosen here is due to Leray and Hopf. Likewise, there are maryediff
constructive procedures of weak solutions (see Leray 1934a, 1934b;\Késele
Ladyzhenskaya, 1957; Shinbrot, 1973). Since, as we shall see in the nexth secti
there is no uniqueness guaranteed for weak solutions in dimension Bjler
these procedures may conceivably lead to different solutions.

4 The Energy Equality and Uniqueness of Weak
Solutions.

An interesting feature of weak solutions that should be emphasizdhtishtey
obey only an energinequalityrather than the energgquality (that is (El) with
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the equality sign), as should be expected from the physical point of Vi
analyze this fact in more detail, let us take, for simplicify= 0. Then, any
“physically reasonable” solution should be such that the associatetikenergy
E(t) at a certain time (= 1||v(¢)||3) is equal toE(c) (o < t) minus the amount
of energy dissipated by viscosity in the time inter{alt] (= v [/ || Vo(7)||d7).
According to (El), however, a weak solution not only does not satspriori
this property but, in fact, its kinetic energy could evegreasein certain time
intervals. Therefore, a first question to ask is if it is possiblednstruct weak
solutions for which the corresponding kinetic energy is a decreasingidanat
time. To this end, it would be enough that weak solutions would satisfy the
following relation

o) 3+2v [ 190(r) Bdr < o)1 “n

for almost allo > 0, and allt € [0, T).

Inequality (4.1) is usually called th&trong energy inequalitySEl).

It is easy to see that {2 is bounded, then the solutions constructed in Theorem
3.1 obey the (SEI). In fact, from (3.10), by takidg> €, it follows that

lim |[vg(0) — v(0)]]; =0, for almost allo € [0, 7). 4.2)

k—o0

On the other hand, from (3.4) (witli = 0) we have

t
lok(8)[15+ 2'//0 IVor(7)|3dT = [lvk(o)]3,
forall o € [0,T) andt € [0,T).

and so, passing to the limik — oo in this relation and using (3.17) (with
replaced bys ) and (4.2), we recover (SEI). With much more effort, one can
show existence of weak solutions obeying (SEI) wkers either the wholdR"
(Leray 1934b), or an exterior domain (Galdi and Maremonti, 1986; Sohr, von
Wahl and Wiegner, 1986; Miyakawa and Sohr, 1988), or a half space (Borchers
and Miyakawa, 1988). It is interesting to observe that all proofs givethege
authors rely on a certain estimate for the pressure field, whichies)pin par-
ticular, the following property fop:

p € L"(0,T; L)), for suitable exponents, q.



28 Navier-Stokes Initial-Boundary Value Problem.

This is much more than the regularity property proved in Theorem 2.1. On the
other hand, one knows how to prove this estimate only for a certain type of
domains and, therefordt is not known if(SEI) holds for an arbitrary(2 (no
matter how smooth)

The strong energy inequality, even though more reasonable than the energy
inequality, still presents an undesired feature, in all time interv&f any) where
it holds as astrictinequality. Actually, in any of such intervals, the kinetic energy
is decreased by a certain amount, gdy, which isnot due to the dissipation. It
seems therefore interesting to furnish sufficient conditions onakwelution in
order that it verifies anergy equalityand to compare them with those ensuring
its uniqueness As we shall see, the former (see Theorem 4.1) are weaker than
the latter (see Theorem 4.2), and they are both verified by a weakosoiat
dimension 2, but noa priori in dimension 3. Thus, the question of the existence
of a three dimensional weak solution which 1) satisfies the energy ggaali
2) is unique, remains open.

In this section we provide conditions on a weak solution under whicmii)
2) above are met. The following theorem holds.

Theorem 4.1 Letv be a weak solution ifi2;. Assume
v € L*0,T; L*()). (4.3)

Thenwv verifies the energy equality

lo@B+2v [ 170(r)ldr =2 [ (@), f(r)dr + ool (44)

forall ¢t € [0,7).

Proof. Let {v,} C Dr be a sequence converging#oin L*(0,7; H(Q)),
see Lemma 2.6. We choose in (2.4) (with= 0) ¢ = (vi)n = Vi, Where( - ),
is the mollification operator defined in (2.20), see Lemma 2.5. Ohsgrhat

' {(v- Vv, v) — (v- Vo, v)}dt
! \

T
< [ 101V @ = o)l (4.5)

T 1/2
< fous = wnllzioan | Tolar)
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by a standard procedure which makes use of Lemma 2.5, we find in the limit
k — oo

/Ot { <v, %) — U(Vo, Vo) —(v - Vo, ,U)} i

—— [ o)ds + (1), 0(0) — (w0, (w01
(4.6)
Since the kernej(s) in (2.20) is even in(—h, h), we obtain

/ot ("” %) B /Ot/otw (v(t), v(t')) didt” = 0.

Moreover, by Lemma 2.5 and (4.5) with, in place ofv,;, andwv in place of
vy, respectively, we obtain

t t
lim (V'U,V'vh)ds:/(V'v,V'v)ds
0

h—0J0

t t
tim [ (F,wi)ds = [ (F,0)ds
T ¢
ilzli}(l) ; (v - Vop,v)ds = /0 (v- Vv, v)ds.

Now, v(t) € H'(Q2), for a.a.t € [0,T) and so, for any such fixedf denoting
by {1, } a sequence fror®(2) converging tov in H! we have

(v - Vv,v) = (v- Vi, )| < (v Vo, (v —4y))|+[(v- V(v —9y),0)]
< FHvllal[Voll2llv — tells HIvIEIV (0 — ) l2.
By the Sobolev embedding theorem it follows th4t
lulls < c(Jullz + [ Vull2), ue WH(Q)

and so we deduce
klgn (v- VY, ¢,) = (v-Vo,v).

However, sincev(t) € H(Q?) for a.a.t, we get

(’U ’ v¢k7¢k) = %(U,V(¢k)2) = 07 forall k € H\Iv

12Recall that the space dimension is 2 or 3.
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which furnishes .
/ (v-Vov,v)ds =0.
0
Finally, by the weakZ.? continuity, and recalling thaf" j,(s)ds = 1/2, we have

h

(), vn() = [ n(s) (v(t). (¢ + 5)) ds

h
= /0 Jn(s) (lv@3 + (v(®), (v(t + s) — (1)) ds
= 3llv(@®)|3 + O(h).
Likewise,
(vo, (vo)n) = 3llvollz + O(h).
Therefore, the theorem follows by lettiig— 0 in (4.6).

Remark 4.1 From (2.12),, for a weak solutiorv we have

T T
| el < c [ o@IBIvo@lid < oo, n=2

and so every weak solution, in dimension 2, obeys the energy equatityevér,
by (2.12),, we have only

v e L¥30,T; L (), n=3

and the question of whether a weak solution obeys the energy equalitineema
open.

Remark 4.2 Recalling that every weak solution i weakly continuous in
time, all weak solutions satisfying (4.4) —and so, all weak solutiorgrrension
2— belong toC?([0, T); L*()).

Remark 4.3 Serrin (1963, Theorem 5) proves (4.4) fer= 3 under the

assumption
3

2
v e L"(0,T; L)), B + o= 1, s € [3,00]. *
This condition, however, is stronger than (4.3) for any choice afds in their
ranges. Actually, fors = 4, it furnishesv € L8(0,T; L*(Q)) which implies
(4.3). Fors > 4, by the convexity inequality we find

2(r+4)/3 r 8—7r)/3
[o]l37 97 < ol oS,
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and so(x) implies (4.3), since > 2 andv € V. If s < 4, by the Sobolev
embedding theorem we havé

[v][s < c||'v||j/2(6—8)||V,U||g(4—s)/2((»:._8)7

which, by the Hlder inequality, gives

T T (5—3)/(9—2s) T 3(4—s)/(9—2s)
[ ol (ol ([ 1voizal
0 0 0

Sinces > 3, also in this caséx) implies (4.3).

Remark 4.4 The result proved in Theorem 4.1 is due to Lions (1960) and is a
particular case of that stated in Shinbrot (1974, Theorem 4.4), where assump
(4.3) is replaced by the following one:

1 1 1
L"(0,T; LY - -== > 4.
vE (Ov ) ())v r+q 27q_
However, unlike Theorem 4.1, the proof given by Shinbrot requires cerain
strictions on the domaiff) (such as boundedness of its boundary) which are
not explicitly formulated by the author. For related questions, we edfer to
Taniuchi (1997).

Our next objective is to give sufficient conditions under which a wedktiem
is unique in the class of weak solutions. The basic idea is due to Leray (1934b,
pp.242-244), who gave this result for the Cauchy problém= IR"). The
generalization to an arbitrary domain is due to Serrin (1963, Theorent &g
procedure to prove uniqueness is essentially the same as that we haveeplist u
for proving the energy equality and, here as there, one approximatesltkierss
by a suitable sequence of functions fray. The main difficulty is to show
the convergence of the nonlinear terms along these sequences. Appdhentl
conditionv € V7 satisfied by a weak solution does not guarantee this convergence
in dimension 3, while it does in dimension 2. The following lemmaayph
fundamental role in estimating the nonlinear term. The first one isrglsi
consequence of theditler and Sobolev inequalities (see Serrin 1963, Lemma
1; Masuda 1984, Lemma 2.4); the second one is a clever application of Dini’s
theorem on the uniform convergence of sequences of monotonicallyadetge
functions (Masuda, 1984, Lemma 2.7).

13Recall that the space dimension is 2 or 3.
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Lemma 4.1 Let r, s satisfy

2
ﬁ+—:1, s € [n,00].
s T

and letv,w € Vr, uw € L7(0,7; L*(f2)). Then,

T T 1/2 T n/2s T 1/r
j/()(v-vfw,u)d%g@ ||vfw||§d:> (/ ||va||3dz) (/ ||u||;’||v||§d§ .

with the exception of the single case- n = 2.
Lemma 4.2Letw € L*(r,T; H'(?)), v € L>(7,T; L™ (Q2)). Assume that

t
/ IVaw|2ds > 0, forall t € (r,T)

and thatwv is right continuous at = 7 in the L™-norm. Then, for any > 0
there exists\M = M (w, v, <) > 0 such that

t t t
/ (w - Vw,v)ds| < 5/ |Vwl|3ds + M/ |wl||3ds, forall t € (7,T).

We also have

Lemma 4.3Letv € V. Then, there exists a sequence of functipog} C
L*(0,T; H*(€)) such that

(i) vy tends tov in L?(0,7T; H'(Q))
(i) vi(t) e D(Q) fora.a.t€(0,7)

Moreover, their mollifiers(vy), = v (€ Dr), see (2.20), satisfy the following

properties
t

t
klim (u - Vu,vp)ds = / (u - Vu,vyp)ds,
—o0 JO 0
for all u € V.
Proof. Let ( -,- ); denote the scalar product H'. Let {®,} be an ortho-
normal basis inf!(Q) constituted by elements @ (<), and set
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Clearly, v;, satisfies (i), by the Lebesgue dominated convergence theorem, and
(i). Now, we have

and
kli}m th,lf(t) — ’Uh(t)Hl,g = 0, forall ¢t € [O,T)

By the Sobolev embedding theorem and by the property of mollifiers, s al
have

lons(t) = va(®)lla < cloni(t) — vtz < cmax on(@)lli2 =2,

[on(t) = on(®)lls < cllonr(t) = va(t)[12 < emaxfloa(t)[12 n =3,

te[0,T]
4.7)
from which we deduce, in particular, for alle [0,7)
lim [|vg k() — v4(t)]|s =0 forn =2
k—oo
(4.8)

/}LIgothk(t) —vp(t)][s =0 for n = 3.

Let us first consider the case= 2. We know from Remark 4.1 thatu|? <
C||Vu||; and so, by the Bider inequality,

t t
| 1w Vo= v)lds < € [ [VulBlone®) —on®l3 (4.9)

The result then follows from (4.9), (4.7}4.8); and the Lebesgue dominated
convergence theorem. In the case= 3, by the Sobolev theorem, we have
|lulls < ¢||Vul2 and, in place of (4.9), we find

t t
| 1 Vo = v)lds < [ VulBlon(t) = vn @)l

and the result follows as in the case= 2.

We are now in a position to show the following uniqueness theorem.

Theorem 4.2 Let v, u be two weak solutions if2; corresponding to the
same data, and f. Assume that: satisfies the energy inequali(il) and that
v satisfies at least one of the next two conditions:
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() v e L7(0,T; L*((2)), for somer, s such that + 2 1, s€(n,o00;
S r
(i) v € L*>(0,7;L"(2)), andv(¢) is right continuous fort € [0,7) in the
L™-norm.

Thenv = u a.e. inQr.

Proof. Let {u;} be a sequence of functions of the type introduced in the
previous theorem, and Idtw; .} be the sequence of Lemma 4.3 . We choose
P =upg in (2.4), withs = 0, andep = vy in (2.4), withs = 0 and withw in
place ofv. We thus obtain

t
/ {('v, 8uh’k> —v(Vv,Vupi) — (v - Vo, uhk)} dr
0 or

== | (F un)dr + (v(t), un(t)) = (vo, (vo)ap);

(4.10)

t
/ {(u, 8vh’k> —v(Vu, Vo) — (v - Vu, vhk)} dr
0 or

_ _/Ot(f, On1)dT + (u(t), vk (t)) = (o, (Vo)nk).

We wish to letk — oo In these relations. The only terms which need a little
care are the nonlinear ones. From Lemma 4.1 and the assumptions mage on
it follows that

(4.11)

t t
Vo (v- Vv, up — uh)dﬂ = /0 (v-V(upr —up),v)dr

t 1
<C( [ 19 une — un)li3dr)2

whereC depends on. Therefore, from Lemma 2.5, we find

t

t
lim [ (v-Vo,up)dr = — / (v - Vup, v)dr. (4.12)
0

k—o0 Jo

Moreover, from Lemma 4.3, we have

t

t
lim [ (u-Vu,vpi)dr = / (u - Vu,v,)dr. (4.13)
0

k—o0 Jo
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Thus, lettingk — oo in (4.10), (4.11) and using (4.12), (4.13) and Lemma 2.5,
we find

/Ot{<v,%> — »(Vv, Vuy,) —(’U-V'v,uh)}dT
— _/Ot(f, wup)dr + (v(t), un(t)) — (vo, (Vo)n),
(4.14)
/Ot { (u, %) —v(Vu, Vo) —(u - Vu, ’Uh)} dr

t
== [ (£ on)dr + (u(t), va(®)) = (v, (vo)n):
(4.15)
By Fubini’'s theorem and the properties of the mollifier, we show

t 6'U,h o t 8’Uh
/0 (’U, W) dr = —/0 (’U/, 87’ ) dT,
and so, adding (4.14) and (4.15) furnishes

—/Ot { v(Vv,Vuy) + v(Vu,Vv,) — (v - Vup,v) + (u- Vu,vy)} dr

_ _/Ot(f, wy, + vp)dT +(0(1), () + (w(t), vy(t))

—(vo, (vo)n) — (vo, (Vo)n)-
(4.16)

We now want to let, — 0 in this relation. Again, the main difficulty is given
by the nonlinear terms, the other terms being easily treated by noédamesnma
2.5. By the same reasoning leading to (4.12) we find

t

t
lim [ (v- Vup,v)dr = / (v - Vu, v)dr. (4.17)
0

h—0.J0

Concerning the other nonlinear term, we shall distinguish the thres:case
a) s >n;
b) s =mn;

C) s = oo.
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In case a), since € V, from Lemma 4.1 we obtain

t
/0 (- Vi, vy, — v)|dr < Cllvn — vl 0720 @)

with C = C(u), and so, by Lemma 2.5 we find

t t

lim [ (u- Vu,vy)dr = / (u - Va, v)dr. (4.18)

h—0.J0 0

In case b), we shall consider only the case- 3, the case: = 2 being treated
in a similar way. We thus observe that by theléer and Sobolev inequalities,
and recalling thau € V7, it follows that

t t t
/0 - V|| odr < /0 ||V ee | o < c/o IVu|2dr <C.  (4.19)
Therefore, settingv = u - Vu, by the property of the mollifier, we obtain

/Ot(u -Vu, v, —v)dr ‘/Ot(w, vy, — v)dT /Ot('w — wp,v)dT

t
< ess sup ||’v(t)||3/ lw — wp|s/2d7.
t€[0,T] 0

By (4.19), we havaw € L'(0,T; L¥*(Q)) and so, by Lemma 2.5, we conclude
the validity of (4.18). Finally, in case c), from the Schwarz inequéadityl the
fact thatu € V7, we easily establish that € L2(0, T; L*(Q2)) and so, using the
following relation

t
/ (w — wp,v)dr
0

t 2 , ot 1/2
< ([lw—wit) ([I0l)
0 0

we again arrive at (4.18). Letting — 0 in (4.16), and using (4.17), (4.18), we
obtain

t
’/ (w, v, —v)dr
0

—/t{ 2v(Vv,Vu) + (w - Vu,v)} dr
0 (4.20)

— _/Ot(f, u + v)dr + 2[(v(t), u(t)) — (vg,vo)],
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with w = u — v. By Remark 4.3p obeys the energy equality
2 t 2 ¢ 2
[o)3+2v [ IVol3dr =2 [ (v, Har + vl (@.21)
0 0
while, by assumption: obeys the energy inequality
2 t 2 t 2
lu()+2v [ IVuldr <2 [ (u, far + wolll.  (4.22)
0 0
Adding 2 x (4.20), (4.21) and (4.22), and observing that
t
/ (w-Vo,v)dr =0
0
we obtain
t t
lw(t)]2 + 21// |V 2dr < 2/ (w - Vw, v)dr. (4.23)
0 0

If s > n, we employ Lemma 4.1 on the term on the right-hand side of (4.23)
together with the Young inequality to deduce

; t 1-1/r t 1/r
[ w-vwvyar <c([Ivwipar)  ([lollelr)
0 0 0

t t
<v [ IVwldr + e [ o]:]jw|3dr

Replacing this inequality into (4.23), we find

t
lw®I3 < e [ [o]l:llw]3ar,

which, with the help of Gronwall’'s lemma, allows us to conclude- u a.e. in
Qr. If s =n, we set

T={r€[0,T]: [[w(s)l]2 =0, forallsel0,r]}.

Clearly, 7 is not empty and, in virtue of thé? weak continuity ofw, it is also
closed. Let us denote by its maximum. Ifr, = T, there is nothing to prove.
Therefore, assuming, < 7', we have

t
/ IVw|2ds > 0, forall t € [, T).
70
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By Lemma 4.2, it then follows

t
/ (w - Vw,v)dr

0

t t
ga/ ||vw||§ds+M/ |lwl|[2ds, for all ¢ € (7o, T).
70 70

Replacing this inequality into (4.23), and recalling thats) = 0 for all s < 7,
we find

t
(@)} < M [ [l s,

which, with the help of Gronwall’'s lemma, again implies= u a.e. inQ)r. The
theorem is thus proved.

Remark 4.5 If 2 is a bounded or an exterior domain with a sufficiently
smooth boundary, or a half space, one can furnish an important gengoaliza
of the uniqueness result given in the previous theorem. Such a geatoaljz
instead of hypothesis (ii), requires only

v € L®(0,T; L™(Q)). (4.24)

This result, due to Kozono and Sohr (1996a) (see also Sohr and von Wahl (1984),
under more restrictive assumptionsmrand the review article of Kozono (1998))
will be proved in Section 7, Theorem 7.2, in the cése- R".

Remark 4.6 Since in dimension 2 every weak solution belongs to the class
CO([0,T); L*(52)), see Remark 4.2, by Theorem 4.2 it follows that every such
weak solution is unique in the class of weak solutions assuming the data,

a fact discovered for the first time by Lions and Prodi (1959). In dinmns8,
by the Sobolev inequality, we have

6—s)/2s 3(s—2)/2s
[o]ls < cllo]|S 9% | Vo372, s € [2,6]

and so, forv € V7, we find

. s 3 2 3

UGL(O7T7L(Q))7 S+’f’_27
and the condition in Theorem 4.2 i®ot satisfied. The problem of whether
a three dimensional weak solution obeying the energy inequality is unique |
its class is an outstanding open question. In this respect, we wislentian
the contribution of Ladyzhenskaya (1969), in her effortitsproveuniqueness.
Specifically, using a method introduced by Golovkin (1964) in a differentexd,
she constructs two distinct three dimensional solutgns = 1, 2, with rotational
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symmetry, corresponding to the same data, imoa-cylindrical domain @+ of
the space-time. This latter is defined as

Qr={(r,z,t): t€[0,T], r € [)Vt,{\/1], z € [l V1], n << (},

where(r, z) denote cylindrical coordinates. Both solutions belong to the Leray-
Hopf class in the sense that

max [vg)? +/ |Vv,]? < oo
t€[0,T] JQ(t) Qr

where

Qt) = {r € [nVt, V1], 2z € [0Vt V1))

Moreover, they match the (vanishing) initial data in the followirgpse

lim |’U7;|2 =0
t—0 Q(t)

and obey “stress-free” boundary conditiotfs Finally, they satisfy the following

condition
T r/q
/(/ |vl-|s> dt < M(e) < 00, i=1,2,
0 Q(t)

with exponentss, » such that
3 2
-+-=1+¢ >0,
S r

(M(e) — oo ase — 0). However, this result can not be considered completely
satisfactory, in that the space-time domé&pn where the solutions; exist isnot
cylindrical (that is, of the typé) x I with Q a fixed spatial domain anfl a time
interval). Rather, it expands when time increases and reduces to a pwigt

when time goes to zero. In the same paper, Ladyzhenskaya furnishes another
counter example to uniqueness in a class of solutions slightly weakerthiea
Leray-Hopf one, in that the spatial derivatives are summable witkx@onent
strictly less than 2. This time the boundary conditions are the usual adherence
conditions, but the space-time domain is still non-cylindrical.

¥That is, the normal component ofis prescribed, together with the tangential component of
the vorticity field.
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Remark 4.7 For later purposes, we wish to notice that the condition

, 2
v e L(0,T; L*(Q)), for somes; € (n,o0], r1 € [2,00), with AL A
S1 1

(A)

is weaker than

. 2
v e L™0,T;L**(Q)), for somes; € (n,o0], 2 € (2,00), with 22

S2 T2
(B)
in the sense that i satisfies (B), then, by the dfider inequality,v satisfies (A)
with s; = so andry = 2s9/(s2 — n) (< 132).

Remark 4.8 In the literature, one may find many other uniqueness theorems
for weak solutions, see, among others, Prodi (1959), Lions and Prodi (1959),
Ladyzhenskaya (1967). However, in all these papers one compares ko we
solutionseach of whichpossesses more regularity than that established in the
existence Theorem 3.1. It is therefore worth emphasizing that Thedr2m
compares two weak solutions of whicimly onepossesses extra regularity. For
uniqueness results related to Theorem 4.2, in a class of “very wealtioss,
see Foias (1961), Fabes, Jones and &R&vi(1972), H. Kato (1993), Chemin
(1999), Monniaux (1999), Amann (1999).

5 Regularity of Weak Solutions.

The regularity theory for weak solutions to the Navier-Stokes eguspresents
different features, according to whether one looksifiderior regularity or reg-
ularity for the initial-boundary value problemIn the first case, denoting by
R = w x (t1,t2) a bounded domain strictly contained{®-, one considers a field
v that satisfies the identity (2.2) for all solenoidal test functigng C{°(R),
(hereafter denoted hi2.2),), which is divergence free i and, further, verifies
the following condition

v € L*(ty, to; WH(w)) N LY (b, ta; L (w)). (5.1)

In the second case, one requires thas a weak solution to the initial-boundary
value problem, in the sense of Definition 2.1. Now, let us consider itié &
defined in (2.3). As already observed in SectiorvXatisfies(2.2), with f =

0. However, this field —though infinitely differentiable in the spaaiables—
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need have no time derivative at all and, in fact, it may even have (aii&z)
singularities in the time intervg, 7). This example, due to Serrin (1962),
leads us to the following considerations. First, for interior regtylaone can
not expect to prove a result where the amount of regularity in time igertizan
that assumed at the outset. Second, the existence of such “bad” solutéres is
to the fact that the possible singularities are absorbed by the preassoreFor
instance, the field (2.3) with a “bad” behavior in time could also be latem
to the quasi-linear (vector) heat equati@gnl”), on condition that, however, the
force f is chosen to have an equally “bad” behavior. On the other harmhes
not meet the boundary conditions (0.3) hidden in requirement a) of Defirfitin
unless it is identically zero, and so there is hope that one can “gagularity
in time by dealing with solutions of the initial-boundary value problem.

The aim of this section is to furnish sufficient conditions for regtyaof
weak solutions. As we shall see, these conditions do not overlapletety with
those ensuring uniqueness, and there is an interesting question whidhlet sti
open. Moreover, as in the case of uniqueness, one shows that every \egso
in dimension 2 is regular, provided the data are regular enough. Imdiore3,
the regularity of weak solutions is an outstanding open problem. Werspalt,
without proof, the interior regularity results, due essentially to &hg (1960),
Serrin (1962) and Struwe (1988), see Theorem 5.1. Successively, in Theorem
5.2, we shall give a result concerning the regularity of weak solutionthef
initial-boundary value problem (in the sense of Definition 2.1). In ddims, we
shall follow the method of Galdi and Maremonti (1988). For further regmyla
results, see H. Kato (1977/78,1986,1989,1993), Tanaka (1987).

Theorem 5.1Let v be a solenoidal field inv x (¢1,t2), satisfying(2.2),
with £ = 0, ® and (5.1). Assume, in addition, thatverifies at least one of the
following two conditions:

: 2
(i) v € L"(t1,ty; L*(w)), for somer, s such thats + = =1, se (n,00);
S r

(i) v € L*™®(ty,ty; L"(w)), and, givene > 0 there isp > 0 such that

/ w(z, t)|"dr < e, forall t € (t, )
ByNw

where B, is a ball of radiusp.

15For the general casg # 0, we refer the reader to the papers of Serrin and Struwe.
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Then,v is of classC*>(w), and each space derivative is bounded in compact
subregions ofv x (t1,t,). If, in addition,

0
8_:5) € L?(t1,ty; LY(w)), for someq > 1,

then, the space derivatives ofare absolutely continuous functions of time.

Remark 5.1 For n = 2, a possible choice of exponents is= r = 4.
Therefore, from Remark 4.1, we conclude that every two dimensional weak
solution is regular in the sense specified in Theorem 5.1. On the otimel, ha
three dimensional weak solutions do not satisfy either of assumfjic(ii), see
Remark 4.6, and nothing can be said about their regularity. An integesdmant
of Theorem 5.1(i) has been given by Takahashi (1990, 1992), who replaces the
Lebesgue spacE” with the Lorentz spacé(™ (“ L"-weak), requiring, however,
that the corresponding “norm” be sufficiently small. In particulamateng by
Br(zo) a ball of radiusk centered atzy, he shows that a sufficient condition
for a weak solutionw to be of class.™® in Bg(zy) x (—R? +t1,t;) *is that it
satisfies an estimate of the type

£

2
(tl o t)(‘f—n)/Qa’ te (—R +t1,t1), o c (n, OO]

@ llo.Bao) <

with a “small” e. As we shall see in Theorem 7.3, a necessary conditiomw for
to become irregular at a timg '’ is that

C
(tl o t)(a—n)/ZU’

lo®)llo = t <t

with C = C(n,o,v) > 0; Takahashi also extends Theorem 5.1(i) to the case
s = Q.

We shall now be concerned with the regularity of weak solutions to fitialin
boundary value problem, in the sense of Definition 2.1. For simplicitysial
assume thayf = 0. Before going into details, we wish to outline the main idea
underlying the proof. To this end, let be a weak solution if2; and letu be

18And hence regular, in the sense of Theorem 5.1.
7See Definition 6.1.
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a weak solution i) to the following initial-boundary value problem

%—1:+U-Vu:uAu+V7r

divu =0 (5.2)

u(z,0) =vy, €
u(y,t) =0, yeodQ, t>0.

By this we mean that: € V; and that it satisfies the following relation

/0 {(u, %—f) —v(Vu,Ve) — (v - Vu, go)} dt =—(vg, ¢(0)), for all ¢ € Dy.

(5.3)
Thus,v becomes the coefficient of a “linearized” Navier-Stokes equatiorticllo
also, thatv and u are both weak solutions to treameNavier-Stokes problem
with the samedatav,. The question is now to determine the weakest conditions
on v in order that:

a) v = u, a.a. inQy.
b) w has more regularity than that originally assumeddor

If b) is met, then, by a)p becomes more regular and theanbecomes more
regular too and so, by a boot-strap argument, we can conclude thetomes as
much regular as allowed by the data. In this latter respect, wetwismphasize
that this method only requires, € H((2), since regularity is established in the
semi-open interval0, 7]. On the other hand, we shall prove regularity up to the
boundary of(2 which, therefore, will be assumed suitably smooth.

Remark 5.2 Instead of the linearized problem (5.2), we could consider the

following one:

%—?+u-Vv=uAu+V7r

divu =0
u(z,0) =vy, €

u(y,t) =0, ye o, t>0.

With such a choice, one could find conditions B (instead ofv) under which
the weak solutiorv becomes regular. This can be done exactly along the same
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lines we shall follow hereafter for problem (5.2). We shall limit selves to
state the corresponding results, without proof, in Remarks 5.3 and 5.6.

Let us first consider condition a). Since the system (5.2)isar in u, we
expect that the conditions om which ensure a), should be weaker than those
ensuring the uniqueness of a weak solution to the full nonlinear Navide$S
problem. Actually, we have

Lemma 5.1Letv € V; and letu be a weak solution to (5.2) ifRr. Then,
if
v € L*0,T; L*()), (5.4)
we havev = u, a.a. inQy.

Proof. Reasoning exactly as in the proof of Lemma 2.1, we show that
satisfies the following relation

[ {(w5) - r9u70) = (0 T L s =(to) 0(0) - (o000,

for all t € [0,7) and allp € Dr.
Subtracting the integral equation in the previous relation from th§2.4) with
f =0, and settingw = u — v we find

/Ot { <w, %‘f) (Y, V) — (v Ve, go)} ds = (w(t), p(t).  (5.5)

From now on, the proof is the same as that of Theorem 4.1. Specifieadly
denote by{w;} C Dr a sequence converging toin L*(0,T; H'())). We then

choose in (5.5)p = w;,x, and pass to the limit8 — co and~ — 0. Reasoning
as in Theorem 4.1, we show

However, sincev(t) € H(?) for a.a.t, we get
t
/ (v-Vw,w)ds =0,
0

and the lemma follows.

The major assumption on the weak soluttooomes into the proof of point b).
To show this, however, we need some preliminary considerationsfileh@ne
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concerns well known results for the steddlipkes systenobtained as a suitable
linearization of the full steady-state Navier-Stokes system)( Specifically, we
have (seee.g., Galdi, 1994, Theorem IV.6.1).

Lemma 5.2Let 2 be a bounded domain d@", of classC™*2, m > 0. For
any F € W™1(Q), 1 < ¢ < oo, there exists one and only one solutiang 2
to the following Stokes problem

—vAu=V¢+ F
divu =0
u(y) =0, ye€oQ,

such that
u € Wm2(Q), ¢ € W™T4(Q).

This solution satisfies the estimate:
|wl[mi2q + |@llmi1q < cl|F|lmg

Moreover, the problem
—vAa =V¢+ \a

diva=0
a(y) =0, ye o,

admits a denumerable number of positive eigenva{ues$ clustering at infinity,
and the corresponding eigenfunctiofs, } form an orthonormal basis it

Our second preliminary result concerns an estimate for the nonliegar t
which strengthens that given in Lemma 4.2.

Lemma 5.3 Let
v € C%[0,T); L™(Q)), u e W>*(Q), ac L*9).
Then, giverm > 0 there exists\/ = M (v,n) > 0 such that
(v Vu,a)| < (|[PAu|3 + [la]3) + M| Vul3,

where P is the orthogonal projection operator frofh* to H (see Section 2).

18with the normalization conditiorf,, ¢ = 0.
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Proof. We extendv to zero outsid&?, and letwv,, be the spatial mollifier of
v, that is,

oy(e,t) = [ Jola = Ev(E ),

with J, (o) an infinitely differentiable function vanishing fde| > » and nor-
malized to 1. It is well known that

sup |vy (z, t)] < c(n)|[v(t)]s
€N
and that

71712(1) |v,(t) —v(t)|[s =0, forallte]|0,T].
Using the continuity assumption on, by an argument completely analogous
to that adopted in the proof of Lemma 2.3, we show that this limit is taken
uniformly in ¢t € [0,77]. In view of this, by Sobolev's theorem and Lemma 5.2,
we thus have

(v - Vu,a)] <[((v —v,) - Vu,a)| +|(v, - Vu, a)|
< [lv = vyl Vullsllalls + supyeq [vy (2, D] Vul2]all2

< ¢||PAulls|[a]ly + M[[Vuls|al,

and the result follows after using Cauchy’s inequality on the lagt 6h this
inequality.

Using these lemmas we can now show the first regularity resulb for

Lemma 5.4 Let 2 be an arbitrary domain idR", uniformly of classC?. 9
Assume thaw € V; and that it satisfies at least one of the following two
conditions:

. 2
(i) ve L7(0,T;L*(R2)), for somer, s such that% + o= 1, s€ (n,o0;

(i) v € CO([0, T]; L™()).

190) is said uniformly of classC™, m > 0, if Q lies on one part of its bounda§Q and,
for eachxzy € 09, there exists a balB centered atr, and of radius independent af,, such
that 92 N B admits a Cartesian representation of the farm= ~(z1,...,2,-1), wherexy is
a function of classC™ in its domain, with its derivatives up to ordet inclusive uniformly
bounded by the same constant, independentlgof If Q is uniformly of classC™, for all
m > 0, we shall say thaf2 is uniformly of classC°.
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Then, for anyv, € H({2), there exists one weak solutiento (5.2) in2y such
that
u € C%(e, T); H'(Q)) N L2 (e, T; W(Q))

ou ) '
5 € L*(e,T; H(Q)),
wheree is an arbitrary positive number. Moreover, hegmma 5.1and Remarks
4.1, 43v=wuae. inQp.

Proof. To avoid unessential technical difficulties, we limit ourselvegitee
the proof in the cas€ bounded andh = 3, referring the reader to Galdi and
Maremonti (1988) for the proof in the general case. We shall use theoFaed
Galerkin method of Theorem 3.1, with the bais.} of H constituted by the
eigenvectors of the Stokes problem (Lemma 5.3). Thus, we shall lookpfor a
proximating solutionsu, of the form

ug(x,t) = ;cm(t)ar(az), ke IN,

where the coefficients,, are required to satisfy the following system of ordinary
differential equations

d
E(uk’ a,) +v(Vug,Va,) + (v-Vug,a,)=0 r=1,...,k, (5.6)
with the initial condition

cr(0) = (vo,a@,) r=1,... k.

As in Theorem 3.1, we show that this system of ordinary differential tona
admits a (unique) solution in the time interv@l 7], as a consequence of the
following relation, which is obtained by multiplying (5.6) by, and summing
over the indexr:

t
lu(®)]] + 2V/0 IVa(r)|lzdr = [|voll5. (5.7)

For simplicity, here as in the following relations, we shall orhi¢ subscript k”.
We next multiply (5.6) by\gcr. and bydcy,./dt, respectively, sum over, and
employ the properties of the eigenfunctiamg to obtain

d
L Va3 + vIIPAu|} = (v Vu, PAu), (5:8)

200f course, in case (i), we hawe, € H(Q) N L™(9).




48 Navier-Stokes Initial-Boundary Value Problem.

and

12 IVu(t) + VDl = (v Y, Dow), (5.9

where P is the orthogonal projection operator frofif to H (see Section 2)
and D; denotes differentiation with respect to We wish now to increase the

trilinear form (v - Vu, a). Let us first consider the case (i)e., co > s > 3
(=n). By the Holder inequality we have

(v Vu,a)| < [[v]ls]|Vllas/ sz llall2;

Furthermore, sinc@s/(s — 2) € [2,6), by the Sobolev theorem and Lemma 5.3
we obtain

[Va]|as/s—a) < cllullys V]S < o] PAuly* | Vu|sS ™/
and so, it follows that
s— 3 s 3/s
(v - Vau,a)| < c|olls|Vaul$ ™| PAul3*|all2.

Employing Young'’s inequality, with exponer2s/(s—3), 2s/3 and1/2 we thus
conclude

(v Vu,a)| < cl[o|26727 | Vall; + 1| PAu3 +1]all3 (5.10)

with arbitraryn > 0 andc = ¢(€,s,n). Summing (5.8) and (5.9), and using
(5.10) witha = PAu anda = D;u, respectively, for sufficiently smaly we
find J

EHVUHS +a(|PAu; + [[Diul3) < col|o] 26727 Vul3.

Integrating this relation furnishes
2 ¢ 2 2 2 r
V()3 + e [ (1PAw]3+ || Druf3)dr < || Vu(r)]3exp [ / ||v<¢>||sz]
forall ¢t € [s,T], s > e.

If we integrate this inequality on € [¢, ¢t] and use (5.7), we obtain the following
limitations

t
lu@llia+ [ (IPAWE+ [fur}) < M, foralte-T),  (5.11)
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where M depends on|vo||2, €, §2, ands. Using these priori estimates on the
approximating solutiongu,} and proceeding as in the proof of Theorem 3.1,
we easily show that from the sequer{ag,} we can select a subsequence which
converges to a weak solutiom of the problem (5.2) and which, in addition,

satisfies
w € L=(e, T; HY(Q)) N L2(e, T; W>2(Q))

ou ) ‘
n € L*(e, T; H(Q)).

From these properties and the identity:

e + 1)~ w@)Ba = [ (énu(s 1) = u(t) 3

~(Auls+ )~ ult)), 2 (uls + h) - u(t)))) ds,

we deduce
u e C%(e, T]; H'()),

and so the result follows under the assumption (i). In case (ii), insieésl 10),
we use the estimate showed in Lemma 5.3 and proceed exactly as ifi)case
The lemma is thus proved.

Remark 5.3 The same conclusion of Lemma 5.4 can be obtained under the
following alternative assumptions, see Remark 5.2,

(i) Vo e L"(0,T; L (), Z+2 =2, s € (n,o0),
(1) Vo e C°([0,TT; L™*(2)).

A similar result, for the cas€@ = IR", was first obtained by Bedio da Veiga
(1995a, 1995b).

Remark 5.4 Once we have established thatas the “minimum” regularity
ensured by Lemma 5.4, we shall prove, in the next two lemmas thatcin fa
v must be of clas€©™ in Q x (g,T), if Q is uniformly of classC>~. Now,
while the assumption (i) coincides with that made for uniqgueness whem,
the assumption (ii) fos = n is stronger. Actually, if we compare it with the
analogous assumption for uniqueness in a domain with a compact boundary (se
Remark 4.5), we see that regularity requicesitinuityin time, while uniqueness
only requiresessential boundednesshough it may be very likely that this latter
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weaker condition also ensures regularity, no proof is so far availabb add
more weight to this conjecture, there is the recent remarkable bohtmn of
Necas, Ruzicka and Svak (1996) who rule out a possible counter example to
regularity proposed by Leray (1934b, pp. 225, 245) (see Remark 7.4). This weak
solution (whose existence has been disproved by the previous authark) wo
satisfyneitherconditions (i), (ii) of Lemma 5.4 bubnly the weaker assumption

of being in the clas4.*°(0,7; L"(£2)). We shall return on the importance of this
condition in Section 7.

In the next lemma we show that a weak solution satisfying eitheor({)i)
of Lemma 5.4, possesses time derivative of arbitrary order. Tlileadef proof
is borrowed from Heywood (1980).

Lemma 5.5Let (2 and v satisfy the assumption demma 5.4.Then,
Div € L*(e, T; W*%(Q2)), forall £> 0. (5.12)

Proof. By Lemmas 5.1 and 5.4, it is enough to prove (5.12) for the solution
u to (5.2). For/ = 0 the result has already proved in Lemma 5.4. We then
construct a solutiom to (5.2) satisfying (5.12) fof = 1. By uniqueness, it will
coincide withv which will then verify (5.12) wit/ = 1. With this information on
the coefficient, we shall then construct a solutioto (5.2) which satisfies (5.12)
with ¢ = 2. By uniqueness, it will coincide witly and so, by induction, we can
prove (5.12) for arbitrary: € IN. Here, for simplicity, we shall prove (5.12) for
¢ = 1, referring the reader to the paper of Galdi and Maremonti (1988) fooaf pr
in the general case. To construct the solutiowe shall use the Faedo-Galerkin
method. So, in addition to the estimates on the approximating soltiatrnwe
have already obtained in the proof of Lemma 5.4, we obtain the following.one
We differentiate (5.6) with respect to time, multiply By, /dt, and sum over

from 1 to k£ to obtain
d
%EHDtuH% + v||VDyul|3 = —(Dyw - Vu, Dyu), (5.13)

where, as before, we have omitted the subscript From the Hdlder inequality,
the Sobolev theorem, and Lemma 5.2 we find

(Do - Vu, Deu)| < || Dyolla|[Valjs|| Deulls < el Dyvll2]|ull22]|V Deull

< |le|| Devlf3]| A3 + nl|V Deulf3,
(5.14)
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wheren is a small positive number. Multiplying (5.6) by,.c.., summing over
r and recalling the second part of Lemma 5.2, we find

(PAu, Dyu) = ||[PAul|; + (v - Vu, PAu).

From Lemma 5.5 and by the Sobolev theorem, we knowdhatC (e, T; L*(£2))
and so, we may use Lemma 5.3 in the preceding relation to obtain

[PAully < c([|[Deull2 + [[Vull2), (5.15)

with a constant independent of € [¢, T'|. Replacing this inequality into (5.14),
and recalling thaf|Vul|, < C with C independent of, we deduce

(D - Vau, Dyw)| < cl| Dywlf3]| Deul|3 + 0|V Dyl

With this estimate, equation (5.13) furnishes
d
@IIDtUIlé +ai||VDwlf; < e Dewll3]| Deuls:

Integrating this inequality fromr to ¢ and then onr from ¢ to ¢, and recalling

Lemma 5.4, we obtain that the weak solutiersatisfies

Dyu € L>(e,T; L*(Q)) N L*(¢, T; HY()). (5.16)

By uniqueness, the same properties holddfoiNotice that, by virtue of Lemmas
5.2 and 5.4, and (5.16) it also follows that

v,u € L=(e, T; W*%(Q)). (5.17)
We now differentiate (5.6) with respect tpmultiply by \,.dcy,. /dt and sum over
r. We get

 d

5@||VDtu||§ + v||PADywul||? = (D - Vu, PAD;u) + (v - VDyu, PADuw).

(5.18)
By the Holder inequality, the Sobolev theorem, (5.17), and Lemma 5.2 it easily
follows that

((Dyw - Vu, PAD) || Dyv|[3]|Vullel| PADulls <c[ Dywlly o [|wllo|| PA Dl
< a1l Dwl|12l| PADyullz < caf [ Dew|[f 5 + | PADyulf3
|(v - VDyu, PADyu)| < ||v]|oo||V Dyur]|2]| PADyu||
< cl| Dl 2| PADull> < x| Deul3, + nl| PADul3
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We now replace this inequalities into (5.18) and integrate with respeanto t
twice, as we already did many times previously. If we then use (5.16arvie

at (5.12) with? = 1. As we noticed, the general case is treated by an elementary
induction procedure.

The next lemma provides regularity in space and time for a weakisojut
for sufficiently smooth().

Lemma 5.6 Let v be a weak solution satisfying the assumption of Lemma
5.4. Assume, furthef) uniformly of classC™, m > 2. Then

Div € L*(e, T; W"*(Q)), forall ¢>0andallk=2,...,m. (5.19)

Proof. The main idea is to write (5.2) as a Stokes system of the following

type 5
—VAu:—a—?—v-Vu—VWEF—VW
diva =0 (5.20)

u(y,t) =0, yeod, t>0.

Then, as in the previous lemma, the proof is again based on an indugjiueent
and the “interplay” betweew andu. Specifically, knowing that

DiF € LP(e, T; WH2(Q)),
by Lemma 5.2 we deduce

Diu € L*(e, T; WHT22(Q)),
and so, by uniqueness,

Div € L*(e, T; WH22(Q)).

If we plug this information back into (5.20), we obtain thEthas more spatial
regularity than that assumed at the outset and, by induction, we obtaindbie pr
Referring the reader to the paper of Galdi and Maremonti (1988) for fulilgeta
we wish here to give a proof of the lemma for the case- 3, / = 1. By what
we said, it is enough to show that

D?*u+ Dw-Vu+v-VDu) € L?(e,T; WH(Q)).
t
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From Lemma 5.5 we know already
Diu € L*(e, T; WH(Q)).
By the Holder inequality and Sobolev theorem, we hadg=€ 0/0z;)

| Dy - Vullz < [[Dev|a]|Vulls < [[Devfl12][ull2,2
D0 - Vullz < [[Dev|l22]lull22
Dy - 9;Vul[z < [[Devl|12 w22

v VD2 < ||[v]|oo|[VDrull2 < [[v]l22]|Diul]i,2
|0iv - VDyull2 < [[0v]4]|VDrulls < [[vl22] Deufl22
v+ 0, VD2 < ||[v]|oo|0;VDrullz < [[v]|22]| Diull2,,

and the result follows from these inequalities and Lemma 5.5.

From the preceding lemma and the Sobolev theorem we at once deduce the
following result

Theorem 5.2Letwv be a weak solution i, corresponding tgf = 0 and to
vo € H(Q2). Assume thab satisfies at least one of the following two conditions:

(i) v e L7(0,T; L*(12)), for somer, s such thatg + % =1, s € (n,o00];
(i) v e ([0, T); L"()).
Then, if2 is uniformly of clasgC*°, we have

v e C®(Q x (0,T]).

Remark 5.5 Intermediate regularity results, with only of classC™, m > 2,
can be directly obtained from Lemma 5.6, and the Sobolev theorem. We lea
it to the reader as an exercise.

Remark 5.6 The same conclusion of Theorem 5.2 can be obtained under the
following alternative assumptions, see Remarks 5.2, 5.3

2IRecall that, by uniqueness,= .
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(i) Voe L"(0,T; L (Q)), 2+2 =2, s € (n/2,)

)

(1)" Vv e C°([0,T); L?(Q)).

Remark 5.7 Every weak solution in dimension 2 & strongly continuous,
and, thus, by Theorem 5.2, it is regular in space and time. Regularity @k we
solutions in dimension two was first obtained by Leray (1934a), Ladyzhgaska
(1958)

Remark 5.8 Theorem 5.2(i), for) = IR® was proved for the first time by
Leray (1934b, pp. 224-227), while f@ = R", n > 2, ands < oo it is due
to Fabes, Jones and Riviere (1972); see also Fabes, Lewis and Rig&r&a(
1977b). Sohr (1983) proved Theorem 5.2(i) with< oo, for domains with
a bounded boundary. An attempt to prove Sohr’s result was already made by
Kaniel and Shinbrot (1967). However, their proof contains an oversidnthw
leads to the Corollary at p. 323 of their paper, where it is stated ith@t,is of
classC*, then any weak solution corresponding to initial dataCit*(Q2) and
satisfying condition (i) is inC°°(Q x [0,77]). This result can not hold as stated,
due to the fact that if a solution is regulap to the timet = 0 included then
certain compatibility conditions have to be met, see Solonnikov (1969, of
the english translation), Heywood (1980, Remark at p. 677). The sam&giver
Is contained in the book of Temam (1977, pp. 303, 307). The question of “how
much smooth” a solution can be up to the timhe- 0, without compatibility
conditions is studied by Rautmann (1983), von Wahl (1983) and Temam (1980).
That condition (ii) implies regularity was first discovered by voraf (1986),
in the case of a bounded domain. This latter result was extended to domains
with a bounded boundary by Giga (1986). The case 3, s’ = 2, ' = 4 of
Remark 5.6 for2 = IR?, is due to Leray (1934b, p. 227); see also Section 6.

Remark 5.9 Regularity results involving assumptions on the pressure, rather
than the velocity, have been given by Kaniel (1969) and, more recdnyly
Berselli (1999).

6 More Regular Solutions and the “Théeoreme de
Structure”.

The aim of this section is two-fold. On one hand, we would like to show tha
regular solutions do exist in three dimension if either we restigkelves to a
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“short” time interval, or if we choose initial data “small” cormued to viscosity??
On the other hand, we wish to give more information about the possiteafmn
of singularities for a weak solution, along the lines of the so-dalteéoreme
de structure”, Leray (1934b, pp. 244-245).

We have the following result due to Heywood (1988)

Theorem 6.1Let Q@ C IR® be uniformly of classC?. Then, for anyv, €
H'(Q), there existd" > 0 and at least one weak solution {2 such that

v € L=(0,T; H'(Q)) N L*(0, T; W**(Q2)).

The numbefl” is bounded from below by a constant depending onlyGmy||2,
v and theC?-regularity of 2. In the case whef is bounded o2 = R" we
have

T > v*C/||Voolz,

whereC depends only ofe. Moreover, there is a decreasing functiGh= G (),
A > 0, such that if
[voll2 < G([IVvoll2),

T can be taken as an arbitrary positive number. In the case whenbounded
or 2 = IR" we haveG = Cv?/||Vvyl2, with C depending only omf.

Proof. We shall show the result for the caQebounded, referring the reader
to the paper of J. Heywood for the general case. To show the exastérstich a
solution, we then use the Faedo-Galerkin method of Theorem 3.1, withate
of the eigenfunctions of the Stokes problem, see Lemma 5.3. In additidreto t
estimate (3.4) withf = 0, we obtain the following one. We multiply (3.2) (with
f =0) by \.c,,, and sum over, to get (as usual, we omit the subscript’)’

14
2dt
Using the Hblder inequality, the Sobolev theorem, and Lemma 5.2 we have the

following two different ways of increasing the teris (say) on the right-hand
side of this equation, namely,

IVo(t)||3 + v||PAv|;5 = (v - Vv, PAv). (6.1)

3/2 3/2 —
a) N<[ollsl|Vollsl| PAv]l> < Vol PAv[? < cv=?| Vo |§+5v ] PAv|3

22\We assume hereafter, for simplicity, thAt= 0. We also notice that existence of regular
and global solutions in dimension 2 has been establishedh@ofem 5.2, see Remark 5.7.

23actually, Heywood requires more regularity on the boundhgn that requested in Theorem
6.1.
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1/2 1/2
b) N<|[vls||Volls|| PAv> <clv]ly[[Volly|| PAv|3.

Replacing a) in (6.1) and settingt) = ||Vv(¢)||3 we find
dy -3 .3
—= < 2
i (6.2)

which, by Gronwall's lemma, and (6.1) and a), in turns gives
t
IVo()]s +/ IPAw(s)|2ds < M, for all t € [0,T) 6.3)
0

where [0, 7)) is the maximal interval of existence of the differential inequalit
(6.2). By classical comparison theorems for differential inegeaslitwe have
T > v3/2¢||Vvyls. In case b) we find

d
ZIVo@)lls+ (v - cllvll*|Voll*) | PAv3 < o,

which, once integrated, furnishes (6.3) for arbitrdry- 0, provided

v > cf|volly*[| Voo 1.
Using the estimate (6.3) along the approximating solutions, togethér tive
procedure employed in Theorem 3.1, we then show the result.

From this theorem, Theorem 5.2, a(@i12), we then obtain the following
result.

Theorem 6.2 Let Q  IR?® be uniformly of classC*>®. 2* Then, for any
vy € HY(Q) there existl’ > 0 and a unique solution to (0.1)-(0.3) with = 0,
which assumes the dat& and which is of clas€C>(Q x (0,T)). Moreover,
there exists a positive consta@t(2) such that, if

[voll2 < G([[Vwoll2),

with G defined inTheorem 6.1we can takel™ arbitrarily large.

We shall now derive some other consequences of Theorem 6.1. Following
Leray, we are able to specify better the set of times where a wdakioso
can be irregular. This can be done for all thdsdor which a strong energy

24See Remark 5.5.
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inequalityholds (see (4.1)). Specifically, we have the following result ofrtig&
regularity”.

Theorem 6.3(Théome de Structurd)et €2 satisfy the assumption dihe-
orem 6.2 2 Assumev is a weak solution i)y, for all T > 0, corresponding
to f = 0 and satisfying the strong energy inequality1). Then, there exists a
union 7~ of disjoint open time intervals such that:

(i) The Lebesgue measure @ co) — 7 is zero;
(i) v is of classC™ in Q x T,
(iii) There existsT™* € (0, 0) ¢ such that7 D (T*, x);
(iv) If vo € H'(Q2) thenT D (0,T3) for someT; > 0.
Proof. Since

lo ()13 +/ IVo(7)|3dr < [lvol3 for all T >0,
0

and sincev verifies (4.1) for almost alt > 0, we can find7™ with the following
properties:

a) [[o(T")[l2 < G([[Vo(T7)]l2),
b) The strong energy inequality (4.1) holds with= T*,

where G is the function introduced in Theorem 6.1. Let us denotevbthe
solution of Theorem 6.1 corresponding to the detd*). By a), v exists for all
timest > 7* and, by Theorem 6.2, it is of clags> in 2 x (7™, o0). By the
uniqueness Theorem 4.2 we must have- v in 2 x (7%, c0), and part (iii) is
proved. Next, denote by the subset of0,7*) where the following conditions
are met:

a) ||[v(t)|l12 < oo, fort € 1,

b) The strong energy inequality (4.1) holds witke 1.

25See Remark 5.5.
26T can be estimated from above by a quantity depending on|jafl. ands?, see Heywood
(1980, Theorem 8 (ii)). See also Remark 6.3.
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Clearly, (0,7*) — I is of zero Lebesgue measure. Moreover, for euwgrg [
we can construct in the time intervély, to + 7'(¢o)) a solutionv assuming at
to the initial datawv(ty) (¢ H*(2)). From Theorems 6.1 and 4.1, we know that
v is of classC™ in Q x (to,to + T'(tp)) and that it coincides withy, since
this latter satisfies the energy inequality with= t,. It is obvious that the set
U (to, to + T'(to)) — I has zero Lebesgue measure. Finallypif € H'(Q),

toel
k(JJy Theorems 6.1 and 6.2, there exigts > 0 such thatv is of classC* in

Q % (0,T3). The theorem thus follows it = J (to, to + T'(to)) U (T, 00).
toel

Remark 6.11t is likely that Theorem 6.3 holds for any (sufficiently smooth)
domain. However, no proof is so far available, since one can prove rregst
energy inequality only for certain domains (see Section 4). On ther dtand,
Heywood (1988) has shown that for afy uniformly of classC?, and any
v € H(Q) there exists at least one corresponding weak solutisatisfying the
following condition: There exists an open getC [0, co) such that

a) [0,00) — R has zero Lebesgue measure;

b) For every compact intervéd, 5| C R there holds

2 A 2 2
s oI+ [ (o) B+ 1D-o(mIB) ds < oo

Since it is not known if weak solutions in dimension 3 are unique in thegsgla
we can not conclude from this result thamy weak solution satisfies a) and
b). Notice that, by Theorem 5.2, every weak solution satisfying b)f islass
C>*(Q x (o, B)), if Q is uniformly of classC®.

Our next objective is to investigate when and in which way a weakisalwt
can become irregular, and to give a more precise estimate oftloéthe possible
irregular times. From Theorem 6.3, we know that this set is the completment
(0,00) of a union7 of intervals, and that, under suitable assumptions on the
smoothness of), v € C*°(Q x T).

For simplicity,in the remaining part of this section, we shall assume that the
domain() C IR? is either bounded and uniformly of clagés®, or Q = IR?, and
that f = 0.

Following Leray (1934b, p. 224) we give the following

Definition 6.1 We shall say that a solution, becomes irregular at the time
t, if and only if
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a) t, is finite;
b) v € C°(Q x (to,t1)), for somety < t;;
c) It is not possible to extend to a regular solution irf¢y, ¢’') with ¢’ > ¢;.

The numbert; will be called epoch of irregularity (“époque de iggularie”,
Leray, loc. cit).

We shall denote by = Z(v) the set of all possible epochs of irregularity.
As we know from Theorem 6.3, the one-dimensional Lebesgue meas(résof
zero.

We have the following result which is essentially due to Leray (1934b, pp.
245-246) and Scheffer (1976a).

Theorem 6.4Let v be a weak solution i, for all 7" > 0, corresponding
to the initial datav, € H(2), and satisfying the strong energy inequality (4.1).
Let¢; be an epoch of irregularity fow. Then, the following properties hold:

(i) ||IVo(t)|2 diverges ag — t; in such a way that

CvP/*

Vo), > ————,
Vol 2 o

t <ty,

with C' = C(2) > 0;
(i) There exists a constartt’ > 0, depending only o2, such that
tl S OV_5||UQ||§.

(iii) The one-half dimensional Hausdorff measureZgb) is equal to zero. 2’

2’Let S be a subset oR™. The m-dimensional (spherical) Hausdorff meas#& of S is
given by

H™(S) = LimH(S),

§—0
where
H3H(S) =inf > (27! diam B;)™,

the infimum being taken over all at most countable coverifigs} of S constituted by closed

balls B; with
diam B; < 4, for all ¢,

see,e.g., Simon (1983).
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Proof. Let ¢; be an epoch of irregularity. Then,

lim || Vo(t)]ls = oc. (6.4)

t—t;

Actually, assuming that (6.4) does not hold, there would exist a seqyenge
tending tot, 7, < t; for all £k € IN, and a numben/ > 0 such that

[Vo(7)]l2 < M.

Sincev () € H'(Q2), by Theorem 6.1 we may construct a solut®with initial
datawv(ry), in a time interval(r, 7, + T1) where

Ty > AfIVo(n); > AM = Ty,

and A depends only o2 and v». The solutionw belongs toL> (7,7, +

To; H(Q2)) and so, by the Sobolev theorem, it satisfies Theorem 5.2(i) with
s = 6 andr = 4 (for instance). Thereforey € C°(Q x (13, 7 + To]). More-
over, by the uniqueness Theorem 4®~= v in [rg, 7, + To]. We may now
selectr;, such thatr, + T, > t;, contradicting the assumption thiatis an epoch

of irregularity, and (6.4) follows. We next operate as in the prdofloeorem
6.1, to show thay(t) = ||[Vv(t)||3 satisfies (6.2) in the time intervdky, t;).
Integrating (6.2) we then find

L L <ve(r—t), to<t<T<t
— SV T —1), 0 T 1-
IVo@)lz  [Vo(r)l2

Letting 7 — ¢; and recalling (6.4), we prove (i). Property (ii) is simply obtained,
by integrating the inequality in (i) fron®) to ¢;, and then using the energy
inequality (EI) in Theorem 3.1. To show (iii) we observe that the/settroduced

in Theorem 6.3, can be decomposed as follows

T = (U(’G,Sﬁ) U(T™,00), 7 < si,
i€l
whereT™ < oo, eachs; is an epoch of irregularity, and
(13,8;) € [0,7%], forallie I;

(6.5)
(Ti, Si) N (Tj, Sj) == (Z), 7 §£ j
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From (i) and the energy inequality (EI) we at once deduce that

S (s — s)12 <CZ/ IVo(7)|3dt < Ci|voll3-

el i€l

Thus, for everys > 0 we can find a finite party of I such that

Z(Ti - Si) < (5, Z(TZ — Si)1/2 < 0. (66)

igls igls

By (6.5)1, Uier(mi, si) C [0,7*] and so the set

[0, T*] — Uier, (73, 8i)

consists of a finite number of disjoint closed intervals j = 1,..., N. Clearly,
N
j=1

By (6.5)2, we have that each intervét;, s;), ¢ ¢ Is, is included in one and only
one B;. Denote by, the set of all indeces satisfyingB; O (r;,s;). We thus

have
= I; U (UI )
J_1

Bj = (U (Tivsi)> U (B; NZ1(v)).

iEIj

(6.8)

By Theorem 6.3, the séf has zero Lebesgue measure and so, f(6r&), we
have
diamBj = Z(TZ — Si).
iEIj
Thus, by (6.6),
diam B; < Z i — 8) <0 (6.9)
i¢1s

and, again by (6.6) an(b.8),

1/2
(Z _Si)) <N (m-s)?<és  (6.10)

itls
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Therefore, property (iii) follows from (6.7), (6.9) and (6.10).
Remark 6.2 From Theorem 6.4(i) it follows that a sufficient condition for
the absence of epochs of irregularity is that

Vv € L*0,T; L*(Q)),

a fact discovered for the first time by Leray (1934b, p. 227) wher- R?.
As we already noticed, this is a particular case of the more generalitions
furnished in Remark 5.6.

Remark 6.3 From Theorem 6.4(ii) it follows that the numbé¥r introduced
in Theorem 6.3 is bounded above by’ C||v, |3, with C = C(2). Moreover, as-
sumev, € H'(Q). By Theorem 6.1 we then know that any epoch of irregularity
t, satisfies the following estimate

ty > °C/|| Vo3,

with C' = C(Q2). Thus, from this inequality and Theorem 6.4¢(ii), it follows that
there existsd = A(§2) > 0 such that if

[vol2]|[Vvoll2 < A2,

the setZ(v) is empty, and we reobtain the second part of Theorem 6.2.

Remark 6.4 There is a wide range of results concerning “partial regularity” of
“suitable” weak solutions, that we will not treat here. In this relgave refer the
reader to the work of Scheffer (1976a, 1976b, 1977, 1978, 1980, 1982, 1985),
Foias and Temam (1979), Caffarelli, Kohn and Nirenberg (1982), Maremonti
(1987), Wu (1991), Lin (1998), and Ladyzhenskaya and Seregin (1999).

7 Existence in the Clasd."(0,T; L*(Q2)), 2/r+n/s =
1, and Further Regularity Properties.
Theorem 5.1 has revealed that the functional class
L (Qr) = L7(0,T; L*(Q)), 2/r+n/s=1, (7.1)

plays a crucial role in the study of regularity of weak solutionsowldver, as
we have seen in Remark 4.6, unless= 2, it is not known whether generic
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weak solution belongs to this class, for a suitable choice ahd s. It seems,
therefore, of the utmost importance to investigate under whictngssons on
the initial datawv, ?® one canconstructa weak solution which, in addition,
belongs to such a class. For example, in Theorem 6.1 we have shown ghat thi
happens ifv, € H(£2). Our main objective in this section is to show existence
of weak solutions in the class (7.7 under mild assumption om,, namely,
that it belongs to Lebesgue spadg3((2). Though obvious, it is worth noticing
that, in order to show regularity of weak solutions, it woulok really matter if
existence in the class (7.1) is proved fostzorttime 7' (say) only, on condition
that one could taker and T suitably. For instance, regularity would trivially
follow if we could takec = 2 andT" a decreasing function dfv,||,. However,
the existence theory known so far, with datalify requiresoc > n. 3% 3!

In order to avoid technical difficulties, in what follows we shalkasie that
Q2 = IR", referring to Giga (1986, Theorem 4) for the more general case when
has a (non-empty) compact bounda?/The results we shall prove will be then
an immediate consequence of suitable estimates for solutione tee#t equation
and of the classical successive approximation method applied tinteized
Stokes problenfsee (7.3) below). In fact, using a decomposition lemma of the
Helmholtz-Weyl type, we shall see that the assumpfiba- R" allows us to
treat this latter problem as a (vector) heat equation.

We have the following.

Lemma 7.1Let F' = {F;;} be a second order tensor field with
FijGLT(IRn), 6iFij€L8(Rn), 7=1....,n, 1<rs<oo.

Then, there exists a second order tensor fi@ld= {G;;} with 9,0,G;; = 0, 33

28Throughout this section, for the sake of simplicity, we slasumef = 0.

29See Remark 4.7.

30This is another way of obtaining regularity of weak solutfon n = 2.

3lweak solutions with data ih°, 2 < o < n, have been constructed by Calderon (1990a).
For existence of strong solutions with data in suitable Bessmaces, larger thah™, see Cannone
(1997), Kozono (1998), Kozono and Yamazaki (1998), Ama@99), and the extensive literature
cited therein.

32For the Cauchy problem, see also T. Kato (1984).

33We shall use the Einstein summation convention over regaatieces. This condition on
G;; has to be understood in the distributional sense.
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and a scalar fieldp such that, for alli,j =1,...,n,
Gi; € L"(IR"), 0,Gi; € L*(R"™), pe L"(R"), 0p e L*(R")
0;F;j = 0,G;; + 0;p
Gl < c(n, )| F
10:Gijlls < c(n, s)[|0:Fi]s-

Proof. Without loss of generality, we may assume tlhat are smooth func-
tions with compact support ilR", see Galdi (1994, Lemma VII.4.3). We set

ple) = | E(x ~ )00, F;(y)dy
Gij = 0ijp — Fij,
where&(¢) is the fundamental solution of Laplace’s equation. It is clear that
0;F;j = 0;Gij + 0;p
0;0,G;; = 0.

Moreover, from the Calderon-Zygmund theorem on singular integvaldind

that
IVplls < c(n, s)[|0:Flls

(7.2)
Ipllr < eln, )| Fijll,

and the lemma is proved.
Our next objective is to prove some existence results for weakisobu to

the following Cauchy problem for the lineariz&lokes system

N Au+Vp+dvF

ot in R

divu = 0 (7.3)

u(z,0) = uo(z)

where F' is a given second-order tensor field, afdiv F'};, = 0,F;;. As usual,
we shall say that is a weak solution to (7.3) it € Vi (see Definition 2.1),
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and it satisfies the following relation

[ {(22) mso]-

/0 T(F,V)dt — (uo, 0(0)), for all ¢ € Dy.

(7.4)

Before proving our results, however, we wish to recall some Wsbwn proper-
ties concerning the heat equation and classical inequalities. Dbepdté(z, ),
(z,t) € RY, the Weierstrass functigrthat is,

1 x?
——————exp{——— .
(4mvt)n/? Pl at

By a direct computation, we show that

W(x,t) =

&
(&

wherec = ¢(n,v). Foruy € L7(IR") and f € L*"(IR}) the convolutions

Wz, t)| <

(7.5)
|0 W (2, )] <

Uz, t) = /]Rn Wz —y,t)uo(y)dy = Wxug

and .
Ui(a,t) = [ (/}R Wz —y,t —1)f(y, T)dy> dr

are called thevolume potentiahndvolume heat potentiatespectively. It is well
known, seeg.g. Ladyzhenskaya, Ural’ceva and Solonnikov (1968, Chapter IV,
§1), that the volume potentials solve the following Cauchy problem#hi®heat
equation

a—U:z/AU in R™ x {t > 0},
ot
L]} U (1) — wol}2 = 0
and
oU;

W:VAUl—i_f ianX{t>0},

limU (z,t) =0, z € R".
t—0
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For f e L"(IR"), 1 < ¢ < oo, n > 1, we set

Tf(x):/Rnﬁdy, 0<A<n.

Then, the followingHardy-Littlewood-Sobolev inequalityolds (seeg.g. Stein

(1970))
1 1 A
< — =4 7.
1T fllp < cll fllgn n + o (7.6)
Finally, if t*u € BC([0,T); L(IR")), andw € L™*(IR’}), we set

{ulgar = sup t*|lu(t)],
te[0,T)

HwHT,S,T = HwHLT*S(]R%)‘

We are now in a position to prove the following result.

Lemma 7.2Letn < s < o0, 1 < ¢ < o0, /sy = 1/s+1/2, 1/gs =
1—n/2s,a=(1—n/s)/2. Assume

F ¢ [*/20(R%)
divF € L% (IR})
t>*F e BC([0,T); L**(R"))
t*F € BC([0,T); L** (R")).
Assume also thai, € H(IR") and that
W xuy € L5 (IR},)
t*W xuy € BC([0,T); L*(IR"))
whereWW is the Weiestrass function and
1402
Then, there exists a unique weak solutiorio (7.3) such that
u € L*"(IR})
t*u € BC([0,7); L*(IR™)).
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This solution satisfies the following estimates
[wllsrr < W wollspr + CllF|[s/2,00,7
(u)sar < (W uo)sar + CLF)s/2,20,r
[tll2,000 < llwoll2 + CLF sy ar
Vullapr < Cllluollz + [[div Fls, q,),

(7.7)

with C = C(v,n, s, q1).

Proof. Uniqueness of the solution in the clags is easy to show along the
same lines of the proof of Theorem 4.2, and we leave it to the readeiiew v
of the Helmholtz-Weyl decomposition result given in Lemma 7.1, itnsugh
to give the proof of existence for the following non-homogeneous hgpadten

problem

38_:: — vAu+divF in R" x (0,T)

u(z,0) = ug(x),

whereu is the j-th component of the velocity field, anf' = (Gj1,...,Gjn),
with G given in Lemma 7.1. A solution to this problem may be written as the
sum of the volume potential corresponding#pand to the heat volume potential
corresponding to di¥’, namely,

t
ult) = W(t) % ug + / W (t —7)  div F(r)dr. (7.8)
0
Integrating by parts in the space variables in the last integral, we hav
t
u(t) = W(t) % ug — / O W (t — 7) % Fy(r)dr. (7.9)
0
From (7.9), we find
t
[u(®)llo < W (2) * uolls + /O 10W (¢ — 7) * Fi(7)]|,, dr- (7.10)

Using (7.5); it follows that

[F(y, )|
T—y?+(t—71)

W (£ — 7) % Fy(r)| < o/}Rn (| dy.

)<n+1>/2
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Since
()
(‘:L’|2+t)(n+1)/2 — |x‘ﬁ(n+1)t(n+1)(1—ﬂ

/2 ﬁ S (07 1)7

we obtain

C [,

|0 W (t — 7) % Fi(7)] < — - =
(t _T)( +1)(1-5)/2 T — y|ﬂ (n+1)

Thus, choosing? < n/(n + 1), and using (7.6) we deduce

[0 (t — 1) % By, < —AEle L 1y (F D8 gy
(t—T)n("ll ")+_ o7

Sinceg is arbitrary in(0,n/(n + 1)), we have that this last relation holds for all
o1 < 0. Thus, inserting the inequality in (7.11) into (7.10), we conclude

IFO
(t . T)%(a_lzle)Jrz

We next differentiate (7.8) with respect 1@ and take the 2-norm of both sides
of the resulting equation, to get

l1<oy<o<oo. (7.12)

Ju(t)lo < W (@) sunll+ [

I0ku(t) 2 < 9(W (1) = wo)ll + [ 10V (¢ = ) 5 v F(r) oy, (713)

Proceeding as before, one shows that

[div F[|,

wherel/s; = 1/s + 1/2. Replacing this estimate into (7.13), we deduce

di Fs1 1 1 1
IVl < VOOl + [ A, = Lhg @0

We now choose in (7.12) = s, 01 = s/2 to obtain

tEE) sy

6D dr. (7.15)

[u()|ls < [|W(2) * uols +/0
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We take theL"-norm in time of both sides of this relation. if> n, we may
apply inequality (7.6) witm =1, p =r and A = (1 — n/s)/2 to the integral in
(7.15) to show the validity of7.7,). To show(7.7,), we multiply both sides of
(7.16) byt*, o = (1 — n/s)/2, and notice that

t“/oz/t dr
0 (t— 7)z(1H%) 04

= B, =const, v=0,1. (7.16)

To show(7.73), we take in (7.12)p = 2, 0; = s; and notice that, by (7.17),

CFE@N, C e
/0 t ydr < (F ) ar /0 P Bo{(F) sy

e Hove)

Finally, to prove of(7.7),, we take theL?-norm in time of (7.14), apply (7.6)
withn =1, p =2, A = (1—n/2s)/2, and notice that, for the solutidi (¢) * u,
of the Cauchy problem for the heat equation it is

1
IV () % wo)llz < 5-lluolls:

The lemma is thus proved.

Before proving the main result of this section, we need a furtherrpirgiry
lemma. The first part is a simple consequence of the Young inequality for
convolutions while the second is due to Giga (1986, Lemma p. £96).

Lemma 7.3Letl < 7,5 < o0,

and leta € L7(IR"™). Then, there exists' = C(v,n, s, o) such that the following
properties hold, for allt € (0,7] and all 7" > 0:

@) [|W xuolls < CtV"ug

on 0S8
(i) W *wollsrr < Clluglley o < s.

We shall now prove the main result of this section.

34actually, Giga’s lemma applies to more general situatidrentthe Cauchy problem for the
heat equation described in Lemma 7.3.
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Theorem 7.1Letn < ¢ < s < oo, and let
2 n n
_I_

T S o
Then, for anyv, € H(R™) N L°(IR"), there existsI’ > 0 and a unique weak
solutionwv to the Navier-Stokes equations{i such thatv € L*"(IR’;). More-
over, denoting byf, the (spatial) mollifier of the functiorf, we have that the
number7 is estimated as follows:

) If o> n:
C

1 n
T> — =—(1——);
_||’UOH(17/B1’ & 2< J)’
(i) If o =mn:

. _ 1/82
T> (C o "’O’?“"> , 52:l<1_2>,
|voyllq 2 q

whereC = C(v,n, s, o) > 0, ¢ is arbitrary in (n, s), andn is taken as small as
to satisfy the conditioffvy — vy, ||, < C.

Proof. We use the method of successive approximations. We set
vi(z,t) = W(t) * vy,
and, fork =1,2,..., vi1 solves the following Stokes-like problem

o0 0
/ { (’Uk+17 _go) — v(Vog41, VS")} dt
0 ot

:/Ooo(’vk ® vi, Vep)dt— (vo, (0)), for all ¢ € Dr.
(7.17)

Using (7.7) and the Blder inequality, we find that®

lvesillsrr < il + Cllvill2 g, 7 < llvillsnr + CTH o2, 1
(vri)sar < (Vi)sar + Clvi)iar
[Vks1ll2,00,0 < llvoll2 + Cllogll2.cor vk s r

[Vviill22r < Cllvoll2 + [vells 2o 2| VUrl227)

(s—n)’
< C(llvollz + T vk llsrr [ Vorll22.1)-
(7.18)

35Throughout the proof of this theorem, we denote(byw generic constant which depends, at
most, onn, o, s, v,.
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Denote byK{" = K{"(T) and K? = K(T) two majorants for|jvy |,z
and ((v1))s o1, respectively. We want to show that there exdst- 0 and Ké’),
i = 1,2, such that

gt |lorr < 25"
forall k=1,2,.... (7.19)

(Vis1 Vsar < 2K

We proceed by induction. Froif7.18); » we obtain
wrsllorr < K (1+CTA K

(V1) sar < K62 (14 CKY).
Thus, (7.19) follows whenever the following conditions are met

cTh KN <1
(7.20)
C’KSQ) < 1.
Let us first consider the case> n. From Lemma 7.3 we find

[o1lls.rr < Cllvollo-

Thus, we choose
1
K§Y = Cllvo |l

and condition(7.19), is certainly satisfied for thos€& such that
T |Jvg |, < C. (7.21)

Moreover, again from Lemma 7.3, we find foi [0, T']
0D o (1), < 0307 wll, < OTH vl

and so, choosing
K =T |vol.,

condition (7.19,) is satisfied again for thos& verifying (7.21). In the case
o = n, observing thaw,, € LI(IR"), for all ¢ € (1, 00], from Lemma 7.3 we
deduce for any; € (n, s)

lvollsrz < llvo = voylln + CT||voy -
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Thus, choosing
1
K" = |09 = voglln + CT™|voy

we see tha({7.19), is satisfied if we seleci sufficiently small andl” such that
Tﬂ2||v0an < C — ||lvo — voyl/n- (7.22)

Likewise, we show that if we také(((f) of the same form ad¢{"”, condition
(7.19), is satisfied for a choice df’ of the type (7.22). Using (7.19) and (7.20),
into (7.18); 4 we also find that

|Vk+1]2,007 < Vo2
(7.23)
[Vogii]l221 < Cllvgo.

Let us now show that the sequente,} is converging to a weak solution be-
longing to the spac&®". To this end, we write (7.17) fov,,; and forv,, then
subtract the two resulting equations and apply the estimates of Lenfine 7
find (k> 1, vy =0)

||vk+1 - vk”s,r,T S CTﬂl (Hkas,r,T + ||vk—1||s,r,T) ||vk - vk—l”s,r,T-

If we employ(7.19); and(7.20); into this inequality, we end up with an estimate
of the following form

|vkr1 — Vkllspr < al|vi — ve_1|s,r, (7.24)

wherea is a constant strictly less than one and independeit dfrom (7.24)
it easy to show thafv;} is a Cauchy sequence in the spdce (IR7.). In fact,
(7.24) implies

Hvk—i—l - 'kasm,T < K(gl)a/kv

and so, forallk’ =k +1,1 >0,

l l k+1

|k — vir || s < Z |Vkti — Vit |rsr < of Zai < 1
i1 i=1

—0ask — o0.

Denoting byw the limit field, from (7.23) we also deduce thate V; and, by

a simple calculation which uses (7.17) and the convergence propert{es, pf

thatw satisfies (2.8) (withf = 0). The existence proof is thus completed. Since
uniqueness is a consequence of Theorem 4.2 and Remark 4.7, the theorem is
completely proved.
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We shall now analyze some consequences of Theorem 7.1. We begin with
the following result which improves Theorem 4.2(ii), see also Remark 4.5

Theorem 7.2. Let v, u be two weak solutions i2; corresponding to
the same data,. Assume thats satisfies the energy inequalif§zl) and that
v e L>(0,T; L"(IR")). Thenv = u a.e. inIR7.

Proof. As in the proof of Theorem 4.2, we establish (4.23). Ieand,
be defined as in that proof, and assume< T'. Thus, (4.23) implies

t t
lw ()2 + 21// Ve 2dr < 2/ (w-Vw,v)dr, te(r,T). (7.25)
70 70
We shall show that
v(t) € L"(R"), forallt e [0,T], (7.26)

and so, in particular, thai(ry) € L"(IR"). In fact, denote by C [0, 7] the set
where possibly (7.26) does not hold. Cleatly,is of zero Lebesgue measure.
Let t. € E and let{t,} C [0,7] — E be a sequence converging to By
assumption, it follows that there exidts € L™(2) such that

lim (v(t), %) = (U, ), for all % € CZ(9).

k—o00

On the other hand, by the wedk continuity, we have

lim (v(t), %) = (v(t.), %), for all § € CF*(9),
and (7.26) follows. Now, by Theorem 7.1, we infer that there exists a weak
solution v, say, assuming the initial data(ry) and belonging to the space
L™ (19,70 + T'(70); L*(R"™)), 2/r +n/s = 1, s > n. In view of Theorem 4.1
and Remark 4.3y satisfies the energy equality my, 7o + 7'(70)) and so, from
Theorem 4.2(i), we conclude = v in [, 7 + T'(70)). We then use (7.25),
and reason as in the proof of Theorem 4.2(i) to show w in |1y, 79 + T'(79)),
contradicting the fact thaty, is a maximum.

Another consequence of Theorem 7.1 is contained in the following one, which
extends the results of Theorem 6.4(i) to the c@se R". %

Theorem 7.3Let v be a weak solution idR7., for all 7" > 0, corresponding
to the initial datav, € H(IR"), and satisfying the strong energy inequality (4.1)

36\We refer to Giga (1986), for the more general case whidms a compact boundary.
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and lett; be an epoch of irregularity fop. Then,||v(t)||, diverges ag — ¢,
for all n < o0 < o0, in such a way that

C

v(t)||s > ,
[o®le 2 Z— 5=

t <ty

with C' = C(n,o,v) > 0;

Proof. Reasoning as in the proof of Theorem 6.4(i), we show that there
can not exist a sequendey}, say, tending ta;, along which|v(7)|, stays
bounded?’ In fact, otherwise, in view of Theorem 7.2, we could construct a
solutionv, havingwv(7;) as initial data and belonging 0 (7, 7. + 1%; L*(IR"™)),
for somer = 2s/(s —n), s > n, ¥ and7, + T, > t;. By Theorem 5.2(i),

v € C°(IR,, x (7,7 + T})) and by the uniqueness Theorem 4.2¢)= v on
(mk, e + T), contradicting the assumption thatis an epoch of irregularity.
From Theorem 7.2(i), we then have

t—t) > C/|lv@)||?7/ ™, t < ¢y,
( ) o

and the result is proved.

Remark 7.1 From Theorem 7.3, we reobtain the sufficient condition for the
absence of epochs of irregularity given in Theorem 5.2. The estimadteemrem
7.3 was first obtained for = 3 by Leray (1934b, pp. 227). Actually, following
the work of Lerayloc. cit. pp. 222-224, we could show that this estimate also
holds in the case = oc.

As we have noticed in Remark 5.4, one important point which is left out i
Theorem 5.4 is to show that a weak solutienwhich in addition satisfies

v € L®(0,T; L"(%)) (7.27)

is in fact regular. So far, it is not known whether this property is wueaot.
The last part of this section will be devoted to investigate the kihcegularity
achieved by weak solution satisfying (7.27). This will be obtained by si@n
Theorem 7.1.

We begin to show the following result.

37Recall that, from the Definition 6.1 of epoch of irregulgyiit follows thatwv(t) € LI(IR")
for all ¢ > 2.
%85ee Remark 4.7.
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Lemma 7.4Letwv be a weak solution ifR’;., verifying (7.27). Then, for any
to € [0,T"), there exists)(ty) > 0 such thatv € C([to, to + d(to)); L"(IR™)). In
particular, v(t) is right continuous in thel"-norm, at eacht € [0, 7).

Proof. We already know that(t) € L"(IR"), for all t € [0,T), see (7.26).
Therefore, for any fixed, € [0,7"), by Theorem 7.1 we know that there exists
d(to) > 0 such that

v e L (to, to+d(to); L"(R™)), forall s>nandr =2s/(s—n), (7.28)

and thusv is regular inl = (¢, %y + 6(t)). We may then multiply the Navier-
Stokes equations (0.1) —writtenTR™ x I, with f = 0— by |v|" v, and integrate
by parts ovedR", to obtain®
1d, .. n—2 A
= Z ||+ vDy (v) + 4= Dy(v) = —(n—2)/ plo[" - Vu-vdz, (7.29)
ndt R"
where

n

Diw)= [

Dsy(v) = /2|2 dg.
o(v) = [ V[0 fde
We now apply the Cauchy-Schwarz inequality in the integral at the right-hand
side of (7.29) to deduce
1d, ..
gEH’UHn + 3vDi(v) +4v
Since

v|" % V|’ dz

n—2

< 2 n—2
= Dg(’l))_C’/]Rnp lw["2dz. (7.30)

Ap = 828] (’Uﬂ)j),
from the Calderon-Zygmund theorem on singular integrals we obtain
1Pl (n+2)/2 < O||v||i+2‘
Using this inequality at the right-hand side of (7.30), we conclude
1d n—2

ZEHUHZ + svD;(v) + 4v - Dy(v) < C|lv||t3. (7.31)
By the same procedure, one also shows
Zlwllz) < C (Di(w) + Da(w) + v]13) (7.32)

39For this type of technique, see Rionero and Galdi (1979),Beicho da Veiga (1987).
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From (7.28) we know thab € L"*2(ty, to + 6(to); L"T*(IR™)) and, by assump-
tion, thatv € L>(0,7; L"(IR"™)). Therefore, (7.31) gives

to+6(to)
/ [D1(v) + Dy(v)]dt < M,

to

which, in turn, once replaced into (7.32), allows us to infer

to +5(to)
J,

Thus, ||v(t)||,, is continuous infty,ty + d(tp)). On the other hand, the weak
continuity of v in L?, along with the uniform boundedness Iif, implies that
v is weakly continuous ir.” and we conclude the continuity efin L"(IR").

d

—|lv||n| < M.
ol <

We are now able to prove the following partial regularity result (Saotat a
von Wahl, 1984, Theorem l11.4).

Theorem 7.4Let v be a weak solution ifR7. verifying the conditiorw €
L>(0,T; L"(IR™)). Then, there exists a séf C [0,7] with the following
properties

(i) veC> (Ex E);
(i) The setS =[0,T] — E is at most countable;
(iii) For every epoch of irregularityt; (€ S) we have

limsup||v(t)]|, > lim ||[v(t)||,.
t—ty t—tf

Proof. Point (i) is already known from Theorem 6.8, Fort¢, € S, by
Theorem 7.1, we may construct a regular solution(tflto + 6(¢p)). We can
take a rational number i, ¢y + 6(¢9)) to show thatS is countable. Let now
t; be an epoch of irregularity. Then, by Theorem &3s right continuous at;
in the L"-norm, that is,

lim [|o(2)]ln = [lv(t1)]ln-
t

—t

40We recall that, by assumption and by Theorem 4. atisfies the energgqualityin [0, T).
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Sincew is weakly continuous at;, we also have that

limsup||v(t)], exists

t—t]

limsupl|o(t)[ln < f[o(t)[ln = lim (@],
t—t]

t—t,
we would then have thai(t) is strongly continuous il." att;. From Theorem
5.2(ii) it then follows that
v C([tl - 771,751]; Ln(]Rn))v m > 07
On the other hand, by Lemma 7.1, we also have that
v € C([ty,t1 +no); L"(IR™)), 12 >0,
and so,
v e C([ti—nti+n); L"(R")), n>0,
and, by Theorem 5.2(ii};; can not be an epoch of irregularity.

Remark 7.2 Condition (ii) in Theorem 7.4 can be refined in the following
way, see Kozono and Sohr (1996b), Beirda Veiga (1996). Let the assumption
of that theorem be satisfied and Igtbe any instant of time. Set

a = limsup||v(t)]|, — lim ||v(t)||,.
t—t] =ty
Then, there exists a constafitindependent of the particular solutian such
that, if a < C, then necessarily = 0, that is,v is strongly continuous irL"
at t; and, therefore, smooth af. Further investigation on the structure of the
possible irregular points of a solution satisfying the assumptiorheorem 7.4,
has been more recently carried out by J. Neustupa (1999).

Remark 7.3 The estimate from below for the tinfé of existence of a solution
with data inL"™ may play a crucial role in the theory of regularity. Though it is
very unlikely that we can give fof' a bound of the type

T > Cllwol,”, 6>0,
we may still conjecture the following estimate
T = f(llvolln) (7.33)

where f()) is a positive, strictly decreasing function &f The following two
possibilities may then arise
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) lim f(A) = fo>0;

i) Alln;lof()‘) = 0.
In the case i), no epoch of irregularity can exist. In fact, we Heve f,. Lett;
be an epoch of irregularity. Then, we could choassuch thatt; — ty < fo/2
(say), and we would conclude, by Theorem 7.1, tinéd regular in(to, to + fo),
contradicting the fact thag is an epoch of irregularity. In case ii), we distinguish
again the following two possibilities:

i) limsupl|v(t)]|, = oo;
t—t]

i) ve L>*0,t; L"(Q)).
In case i}, for t very close tot;, we would have
[o(®)[ln > FHt = 1), t <t

and, therefore, since
lim f~1(\) = oo,
A—0

a condition even weaker thgi@.27) —depending orfi— would imply regularity.
In case i}, setting

M =ess sup |[v(t)n-

te[0,61)

we would havel' > f(M), and so, reasoning as in case i), we would deduce
thatt, can not be an epoch of irregularity. From all the above, we then conclude
that, if an estimate of the type (7.33) holds 6y then a condition weaker than
(7.27) and depending ofi would suffice to ensure regularity of a weak solution.
However, we only have fof’ the estimate of Theorem 7.1(ii).

Remark 7.4 In view of Theorem 6.4(i) and Theorem 7.3, we deduce that a
weak solutionv in dimension 3 will never go through an epoch of irregularity
t1, provided that the conditiom € V7 is incompatible with the following ones:

C

[Vo(t)]]2 > m

t<ty, o>n. (7.34)

v(t)|e =
lo®lls > =
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With this in mind, J.Leray (1934b, p.225) propose@assiblecounter example

to the existence of a global regular solution. This counter exampldd lead

to a weak solution possessing just one epoch of irregularity. Bveagh the
existence of such a solution has been recently ruled out by NecagkRund
Sveik (1996) (see also Tsai (1998)), we deem it interesting to reproduce and
discuss it here. This solution is constructed as folloAssumehat the following
system of equations

vAU(y) —a[U(y) +y - VU(y)] + VP(y) =U(y) - VU (y)

_ y € R",
divU(y) =0

admits a non-zero solutiol € W*(IR"), for somea > 0, and set
AMt) = (2a(t, —t)7V2, t<t.

Then, the function

u(x,t) =

{ AOUNb)z) it <t
(7.35)

0 ift>t

IS a weak solution to the Navier-Stokes probleniif. By a simple calculation
which uses (7.35) we show that

lu(®)lls =C (AX) ", s€[2,00), t<t

(7.36)
IVu(®)]lz = CA®))'2, t <t

From (7.36) it is clear that. satisfies all requirements of a weak solution and
that, in fact, it possesses even more regularity, such as sfrbgntinuity in
time. However,u blows up att; exactly in the way prescribed by (7.34), so
that¢, is the only epoch of irregularity. Moreovefu(t)|, < C, uniformly in
t, and ||u(t)||, becomes irregular at just in the way predicted by Theorem
7.4(iii)). As we mentioned, such a solution does not exist, since N&adcka
and Sveak, loc. cit., have shown thal/ = 0. This result gives more weight to
the conjecture that the clagg->°(IR7) is a regularity class.
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