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Abstract. In this note, we show that under certain assumptions the scalar Riccati
differential equation x′ = a(t)x + b(t)x2 + c(t) with periodic coefficients admits at
least one periodic solution. Also, we give two illustrative examples in order to
indicate the validity of the assumptions.

1. Introduction

A large class of dynamical systems appearing throughout the field of engineering
and applied mathematics is described by the second order differential equation of the
form

(1) y′′ + p(t)y′ + q(t)y = r(t),

where p, q, and r are real functions on R. In general, there is no method for solving
nonhomogeneous linear second order differential equations and, therefore, a complete
analysis of (1) does not exist. Nevertheless, in the homogeneous case, when r = 0 in
(1), by making the change of variable x = −y′/y, we are led to a first order differential
equation of the form

(2) x′ = −p(t)x+ x2 + q(t).

Although the analysis of these kinds of differential equations are still in a prelimi-
nary stage, recently various issues concerning theoretical aspects of such differential
equations have been successfully clarified.

In the literature, (2) is a special case of a more general one, so-called scalar Riccati
differential equation, namely

(3) x′ = a(t)x+ b(t)x2 + c(t),

where a, b, and c are real functions on R. The study of (3) has long been an important
topic and dates from the early period of modern mathematical analysis. It began with
examinations of particular cases of (1) by James Bernoulli (1654–1705) and then by
Count Jacopo Francesco Riccati (1676–1754).

The generalization of scalar Riccati differential equation to the matrix case gives us
matrix Riccati differential equation which is one of the central objects of present day
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control theory. In fact, in the theory of control systems, the qualitative control prob-
lem has received considerable research interests. This problem is regarded as an exten-
sion of the classical result of Kalman et al. [10] on controllability and stability of linear
systems which is relevant to such differential equations (see [5, 16, 4, 3, 7, 8]). Matrix
Riccati differential equations also play predominant roles in other control theory prob-
lems such as dynamic games, linear systems with Markovian jumps, and stochastic
control. The study of such differential equations, which also appears in a number of
other areas such as biomathematics and multidimensional transport processes, is an
interesting area of current research. There exists a rather extensive literature on the
matrix Riccati differential equation, mainly developed within the automatic control
literature. We refer the readers to [3] as an extensive survey as well as to [5, 16, 4, 9]
as fundamental papers on this area.

The analysis of periodic systems has long been a topic of interest. In this direction,
an important question, which has been studied extensively by a number of authors
(see, for example [1, 12, 14, 18, 17]), is whether Riccati differential equations can
support periodic solutions or not. For example, in theoretical aspects, knowledge of
the periodic solutions is important for understanding the phase portrait of the Riccati
differential equations and, in particular, the qualitative behavior of solutions (see, for
example [16]). On the other hand, on the applied side, in the problem of quadratic
periodic optimization, arising for instance in the design of solar heating systems where
the ambient temperature represents a periodic input, there occurs the need to com-
pute the periodic solutions, if any, of a scalar or matrix Riccati differential equation
with periodic coefficients. Another application is found in Kalman filtering of pe-
riodic systems such as orbiting satellites, seasonal phenomena like river flows, and
econometric models, etc. We refer the readers to [2] for an overview on the structural
properties of periodic systems, to [3] for the properties of periodic solutions to peri-
odic Riccati differential equations, and to [6] for the study of the periodic Lyapunov
differential equations. Also, the book by Reid [15] covers many areas in Riccati dif-
ferential equations and is concerned with applications of these differential equations
such as transmission line phenomena, theory of random processes, variational theory
and optimal control theory, diffusion problems, and invariant imbedding.

In this note, we deal with scalar Riccati differential equations. In the light of the
above discussion, it seems reasonable to consider (3) and asks when this differential
equation has a periodic solution. In this direction, we assume that a, b, and c are
ω-periodic continuous real functions on R and give certain conditions to guarantee
the existence of at least one periodic solution for (3). The proof hinges on Schauder’s
fixed point theorem (see Theorem 2.2) applied to integral equation (5) which is a
reformulation of (3). In order to indicate the validity of the assumptions made in our
result, we also treat two illustrative examples.
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2. Preliminaries

In this section, we present a brief survey of notions and results of functional analysis
which we shall need later. The reader is referred to [11] for a fuller treatment of the
subject.

We start by recalling the definition of a normed space. Let X be a vector space
over R. Then a norm on X is a function ‖ ‖ : X −→ R such that (1) ‖x‖ ≥ 0 for
all x ∈ X and ‖x‖ = 0 if and only if x = 0, (2) ‖αx‖ = |α|‖x‖ for all α ∈ R and for
all x ∈ X, (3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X (triangle inequality). A vector
space X over R together with a norm ‖ ‖ is called a normed space. In this case, the
distance from x to y in X is defined by d(x, y) = ‖x − y‖. This defines a metric on
X. Therefore, every normed space has a metric and so has an associated topology.
All the standard topological notions same as open sets, closed sets, bounded sets,
convergence, etc. may be applied to X. Also, we recall that in a normed space X, a
subset A of X is called convex if αx+ (1−α)y ∈ A for all x, y ∈ A and for all α with
0 ≤ α ≤ 1.

We are now going to define Banach spaces which are the most manageable among
all types of normed spaces due to their metric structure. A normed space X is called
a Banach space if it is complete, i.e., if every Cauchy sequence in X is convergent.
Also, for a given Banach space X, a compact operator on X is a bounded operator
S : X −→ X that maps the unit ball in X to a set in X with compact closure. It is
easy to see that the operator S is compact on X if and only if every bounded sequence
{φn} on X has a subsequence {φni

} such that {S(φni
)} is convergent on X.

We also recall that a given sequence {φn(t)} of functions from [a, b] to R, is called
equicontinuous if for every ε > 0, there exists a δ > 0 such that for all n ∈ N and for
all t1, t2 ∈ [a, b], |t1 − t2| < δ implies that |φn(t1)− φn(t2)| < ε.

In the sequel, we also need the following weak version of Ascoli–Arzelà theorem.

Theorem 2.1 (Ascoli–Arzelà). Let {φn(t)} be a sequence of functions from [a, b] to
R which is uniformly bounded and equicontinuous. Then {φn(t)} has a uniformly
convergent subsequence.

Finally, we close this section with the following fixed point theorem which is origi-
nally due to Schauder and is a key tool for proving the main result of this note (see
Main Theorem 3.2).

Theorem 2.2 (Schauder). Let X be a Banach space and Ω be a closed, bounded, and
convex subset of X. If S : Ω −→ Ω is a compact operator, then S has at least one
fixed point on Ω.

3. Main result

In this section, we state and prove the main contribution of this note (see Main
Theorem 3.2). In order to do this, suppose that a, b, and c are ω-periodic continuous
real functions on R such that

∫ ω

0
a(ξ)dξ 6= 0. Define the function G : [0, ω]× [0, ω] −→
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R as follows:

(4) G(t, s) =


1

1−exp(
R ω
0 a(ξ)dξ)

exp
( ∫ t

s
a(ξ)dξ

)
: 0 ≤ s ≤ t ≤ ω,

exp(
R ω
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

exp
( ∫ t

s
a(ξ)dξ

)
: 0 ≤ t ≤ s ≤ ω.

The following lemma is useful for proving the Main Theorem 3.2.

Lemma 3.1. Let a, b, and c be ω-periodic continuous real functions on R such that∫ ω

0
a(ξ)dξ 6= 0. Suppose that x is a continuous real function on R. If x is a solution

of the integral equation

(5) x(t) =

∫ ω

0

G(t, s)
(
b(s)x2(s) + c(s)

)
ds,

then x is a solution of (3).

Proof. By assumption, x is a solution of integral equation (5). Therefore, by using
expression (4), we may write

(6)

x(t) =

∫ ω

0

G(t, s)
(
b(s)x2(s) + c(s)

)
ds

=

∫ t

0

G(t, s)
(
b(s)x2(s) + c(s)

)
ds+

∫ ω

t

G(t, s)
(
b(s)x2(s) + c(s)

)
ds

= 1
1−exp(

R ω
0 a(ξ)dξ)

∫ t

0

exp
( ∫ t

s
a(ξ)dξ

)(
b(s)x2(s) + c(s)

)
ds

− exp(
R ω
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

∫ t

ω

exp
( ∫ t

s
a(ξ)dξ

)(
b(s)x2(s) + c(s)

)
ds

=
exp(

R t
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

∫ t

0

1
exp(

R s
0 a(ξ)dξ)

(
b(s)x2(s) + c(s)

)
ds

− exp(
R ω
0 a(ξ)dξ) exp(

R t
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

∫ t

ω

1
exp(

R s
0 a(ξ)dξ)

(
b(s)x2(s) + c(s)

)
ds.
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Thus, we obtain

(7)

x′(t) =
a(t) exp(

R t
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

∫ t

0

1
exp(

R s
0 a(ξ)dξ)

(
b(s)x2(s) + c(s)

)
ds

+ 1
1−exp(

R ω
0 a(ξ)dξ)

(
b(t)x2(t) + c(t)

)
−a(t) exp(

R ω
0 a(ξ)dξ) exp(

R t
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

∫ t

ω

1
exp(

R s
0 a(ξ)dξ)

(
b(s)x2(s) + c(s)

)
ds

− exp(
R ω
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

(
b(t)x2(t) + c(t)

)
= a(t)x(t) + b(t)x2(t) + c(t),

which shows that x is a solution of (3) as requested. �

Note that expression (4) is, in fact, the Green’s function of (3). Therefore, by using
methods for finding Green’s function, we may find the kernel G(t, s) appeared in
expression (4). However, our approach is different, but for going through the details
of finding Green’s function we refer the reader to [13].

We now state and prove the Main Theorem 3.2 which is the main contribution of
this note.

Main Theorem 3.2. Let a, b, and c be ω-periodic continuous real functions on R
such that

∫ ω

0
a(ξ)dξ 6= 0. Consider

(8) M = sup
0≤t,s≤ω

|G(t, s)|,

(9) N = sup
0≤t≤ω

∣∣∣∣ ∫ ω

0

G(t, s)c(s)ds

∣∣∣∣,
and suppose that

(10)

∫ ω

0

|b(ξ)|dξ ≤ 1

4MN
.

Then (3) admits at least one ω-periodic solution.

Proof. Let

(11) X = {φ | φ is a ω-periodic continuous real function on R}

and for φ ∈ X define ‖φ‖ = sup0≤t≤ω |φ(t)|. It is easy to see that X is a Banach
space. Define the function ψ : [0, ω] −→ R as

(12) ψ(t) =

∫ ω

0

G(t, s)c(s)ds
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and consider

(13) Ω = {φ ∈ X | ‖φ− ψ‖ ≤ N}.

It is easy to see that Ω is closed, bounded, and convex subset of X. Define the
operator S : Ω −→ X by sending φ to S(φ), where S(φ) defined as

(14) S(φ)(t) =

∫ ω

0

G(t, s)
(
b(s)φ2(s) + c(s)

)
ds.

First, we claim that S maps Ω into Ω. In order to show this, by using (13) and
(12), we obtain |φ(t)| ≤ N + |ψ(t)| ≤ 2N holds for all φ ∈ Ω and for all t ∈ [0, ω].
Therefore, (14), (12), (8), and (10) imply that for all φ ∈ Ω and for all t ∈ [0, ω],

(15)

|S(φ)(t)− ψ(t)| = |
∫ ω

0
G(t, s)b(s)φ2(s)ds|

≤ 4MN2
∫ ω

0
|b(s)|ds

≤ N.

Thus, for all φ ∈ Ω, we have ‖S(φ)− ψ‖ ≤ N and so S(φ) ∈ Ω. This shows that S is
an operator from Ω into Ω.

Next, we show that S is compact. In order to do this, suppose {φn} is a sequence
on Ω which is, by (13), bounded. Thus, there exists L > 0 such that for all n ∈ N and
for all t ∈ [0, ω], we have |φn(t)| ≤ L. We should show that {φn} has a subsequence,
say {φni

}, such that {S(φni
)} is convergent on Ω. Note that, by Lemma 3.1, for all

n ∈ N, the function S(φn) is, in fact, differentiable and for all t ∈ [0, ω] we have

(16) S(φn)′(t) = a(t)φn(t) + b(t)φn
2(t) + c(t).

Therefore, for all n ∈ N and for all t ∈ [0, ω], we have |S(φn)′(t)| ≤ AL + BL2 + C,
where A, B, and C are the maximum values of |a|, |b|, and |c| on [0, ω], respectively.
Therefore, for given ε > 0, if we consider δ = ε/(AL + BL2 + C), then for all n ∈ N
and for all t1, t2 ∈ [0, ω], |t1 − t2| < δ implies that

(17) |S(φn)(t1)− S(φn)(t2)| ≤ (AL+BL2 + C)|t1 − t2| < ε.

Thus, {S(φn(t))} as a sequence of functions on [0, ω] is equicontinuous and Theorem
2.1 then implies that there exists a subsequence of {S(φn(t))}, say {S(φni

(t))}, which
is uniformly convergent on [0, ω]. This means that {S(φni

)} is convergent on Ω and
so S is compact.

Therefore, Theorem 2.2 implies that there exists x ∈ Ω such that S(x) = x, i.e., for
all t ∈ [0, ω],

(18) x(t) =

∫ ω

0

G(t, s)
(
b(s)x2(s) + c(s)

)
ds.

Since x ∈ Ω, x is a ω-periodic continuous real function on R and so what remains to
be proved is that x is indeed a solution to (3). But this already proven by Lemma
3.1. �
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4. Two illustrative examples

In this section, we treat the following two illustrative examples. The first example
is generated by trial and error process, using computer codes in Mathematica 5.2 with
symbolic operations. Therefore, it seems to be quite far from a real practical problem.
However, it shows that the novelty of our approach, since the previous results in the
literature are inapplicable for proving the existence of periodic solutions of it. Also,
this example indicates the validity of the assumptions made in the Main Theorem 3.2.
These are the only justification for putting this example. Instead, the second example
comes from mathematical modeling of natural phenomenons.

Example 4.1. Suppose that a, b, and c are 1-periodic continuous real functions on
R which are defined as follows:

(19) a(t) = π(447 cos πt−288 cos 2πt+cos 3πt+23762 sin πt+288 sin 2πt−4 sin 3πt+480)
2(cos πt+3)(136 cos πt+4 cos 2πt−312 sin πt+sin 2πt−8063)

,

(20) b(t) = −48π(3 cos πt+53 sin πt+1)
−15306 cos πt+160 cos 2πt+4 cos 3πt−1871 sin πt−306 sin 2πt+sin 3πt−48242

,

(21) c(t) = π(303 cos πt−288 cos 2πt+cos 3πt+21218 sin πt+288 sin 2πt−4 sin 3πt+432)
15306 cos πt−160 cos 2πt−4 cos 3πt+1871 sin πt+306 sin 2πt−sin 3πt+48242

.

Here, we have
∫ 1

0
a(ξ)dξ = −1.013501, and so the function G is as follows:

(22) G(t, s) =

 1.56972 exp
( ∫ t

s
a(ξ)dξ

)
: 0 ≤ s ≤ t ≤ 1,

0.569725 exp
( ∫ t

s
a(ξ)dξ

)
: 0 ≤ t ≤ s ≤ 1.

Since

(23) M = sup
0≤t,s≤1

|G(t, s)| = 1.56972

and

(24) N = sup
0≤t≤1

∣∣∣∣ ∫ 1

0

G(t, s)c(s)ds

∣∣∣∣ = 1.37309,

we have

(25)

∫ 1

0

|b(ξ)|dξ = 0.107581 < 0.115988 =
1

4MN
.

Therefore, the Main Theorem 3.2 implies that (3) admits at least one 1-periodic
solution. This 1-periodic solution may be given by expression (29), where k is an
arbitrary constant. Note that expression (29) is the general solution of (3) defined by
(19), (20), and (21). The general solution is generated by knowing three particular
solutions (26), (27), and (28) of the equation. Here, all numerical results are correct
to 50 digits, using arbitrary precision facilities devised in this software, and then all
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results truncated to 6 decimal places. For sacking more accurate results, we also
normalized variable and restricted ourselves to the interval [0, 1).

(26) x1(t) = 1,

(27) x2(t) = 2 + 1
3
cos πt,

(28) x3(t) = 8 + 1
8
(cosπt+ sin πt),

(29) x(t) = k cos 2πt+12k sin πt+k sin 2πt+673k+2(62k+5) cos πt−6 sin πt−288
2(3k+5) cos πt+6(8(7k−6)+(k−1) sin πt)

.

Example 4.2. Consider the Riccati differential equation

(30) x′ = x+ b(t)x2 + sin t,

where b is a 2π-periodic continuous real function on R. This equation comes from
mathematical modeling of natural phenomenons. Here, we have

∫ 2π

0
dξ = 2π, and so

the function G is as follows:

(31) G(t, s) =


1

1−exp(2π)
exp(t− s) : 0 ≤ s ≤ t ≤ 2π,

exp(2π)
1−exp(2π)

exp(t− s) : 0 ≤ t ≤ s ≤ 2π.

We have

(32) M = sup
0≤t,s≤2π

|G(t, s)| = 1.001870,

(33) N = sup
0≤t≤2π

∣∣∣∣ ∫ 2π

0

G(t, s)(sin s)ds

∣∣∣∣ = 1.103237,

and so if

(34)

∫ 2π

0

|b(ξ)|dξ ≤ 1

4MN
= 0.226182,

then the Main Theorem 3.2 implies that (30) admits at least one 2π-periodic solution.
For instance, if we consider

(35) b(t) = −28(784 + cos t+ 29 sin t)

(784 + cos t)2
,

then since

(36)

∫ 2π

0

|b(ξ)|dξ = 0.2244 < 0.226182,

we obtain that (30) admits at least one 2π-periodic solution, that is,

(37) x(t) =
1

28
(784 + cos t).
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5. Conclusion

In this note, we investigate the existence of periodic solutions for a class of scalar
Riccati differential equations. Suppose that a, b, and c are ω-periodic continuous real
functions on R such that

∫ ω

0
a(ξ)dξ 6= 0. Consider

(38) M = sup
0≤t,s≤ω

|G(t, s)|,

(39) N = sup
0≤t≤ω

∣∣∣∣ ∫ ω

0

G(t, s)c(s)ds

∣∣∣∣,
and suppose that

(40)

∫ ω

0

|b(ξ)|dξ ≤ 1

4MN
,

where the kernel G(t, s) is defined as follows:

(41) G(t, s) =


1

1−exp(
R ω
0 a(ξ)dξ)

exp
( ∫ t

s
a(ξ)dξ

)
: 0 ≤ s ≤ t ≤ ω,

exp(
R ω
0 a(ξ)dξ)

1−exp(
R ω
0 a(ξ)dξ)

exp
( ∫ t

s
a(ξ)dξ

)
: 0 ≤ t ≤ s ≤ ω.

Then the scalar Riccati differential equation x′ = a(t)x+ b(t)x2 + c(t) admits at least
one ω-periodic solution. In order to indicate the validity of the assumptions made in
our result, we also treat two illustrative examples.
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[12] V. S. Loščinin, Periodic solutions of Riccati’s equation, Balašov. Gos. Ped. Inst. Učen. Zap. 10
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