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ABSTRACT An existence and uniqueness result is presented
for the solution of a parabolic initial-boundary value problem
under Dirichlet null boundary conditions for a general parabolic
equation of order 2m with a strongly nonlinear zeroth-order
perturbation. This is the parabolic generalization of a class of
elliptic results considere earlier by the writers and others and
is based upon a new compactness theorem.

Let Q be a bounded open set in Pn., (n > 1), Q the cylinder £Q
X [0,T] for a given T > 0. Consider the quasilinear parabolic
partial differential equation of order 2m on Q, (m > 1), of the
form

dt + At(u) + g(xt,u) =f(x,t) [1]

with the initial-boundary conditions

u(x,O) =OforxinQ;-~j(xt)'ONJ
= Oforx inbdry(Q), t >0,0 < j < m -1 [2]

(N being the normal derivative). Using the conventional
notation (as described, for example, in ref. 1), At for each t in
[0,T] is an elliptic operator of order 2m in the generalized di-
vergence form

At (u) = E1 31 <.m(-1)I 0D A8(x,t,u,... ,Dmu) [3]
with the coefficient functions AO(x,t,() of x in Q, t in [0,T], and
= I a: lal < m} continuous in t and measurable in (x,t).
In a preceding paper (1), the writers studied the Dirichlet

problem for the elliptic equation A(u) + g(x,u) = f(x). Here,
we consider the corresponding parabolic problem under the
assumption that At is a regular elliptic operator in the Sobolev
space Wm P(Q) for a given exponent p > 2-i.e., satisfies the
following three conditions:

(i) There exists c1, > 0, ho in LP'(Q), (p'= p/(p - 1)), such
that

IAt(x,t,#)l < co II IPl + ho(x,t)j
for all (x,t,{).

(ii) For (x,t) outside of a null set, all lower-order jets n, and
<. ¢.#,

1:1,1 = m[A,3(x,t,n,~)- A#(xJ,n,x#)](~#- t0) > 0.
(iii) There exists c1 > 0, hi in L'(Q) such that for all

(xt,4)
s mA#(x,t,{)t# > cllP - hi(x,t).

For the strongly nonlinear perturbing term g(x,t,u), we as-
sume no a priori growth restriction, but aside from the usual
condition that g(x,t,u) is measurable in (x,t), continuous in u,
we impose the following set of conditions:

(iv) There exists a continuous nondecreasing function h:RI
R1 with h(0) = 0 such that for all (x,t) in Q,r in R1, and a

fixed C

rg(x,t,r) > O; lg(x~t,r)l < jh(r)j; jh(r)l
< C$ g(x,t,r)| + IrIp-l + 11.

The following two theorems, for the first of which we sketch
the most important steps in the proof, are our basic result for
this parabolic case:
THEOREM 1. Let Q be a bounded open subset of Rn whose

boundary satisfies the mild smoothness condition (s) of Def-
inition 1 below, and consider a parabolic equation 1 satisfying
the conditions i, ii, iii, and ivfor a given p > 2. Let f be a dis-
tribution in LP' (0,T:W-m.P'(Q)).

Then: There exists u in LP (0,T:Wm P(Q)) n C(0,T:L2(Q))
with u(O) =0 such that g(u) and ug(u) lie in L'(Q) that satis-
fies the equation 1 with the additional condition:
For O < t < T,

2 I 2u(t)IILau + < As(u(s)),u(s) > ds

+ ug(u) = <f(s),u(s)> ds [4]

(in which Qt = Q X [O,t]).
THEOREM 2. If, in addition, g(x,t,r) is nondecreasing in r

and each As is monotone, the solution u of Theorem 1 is
uniquely determined by f.
The most important new ingredient in the proof of the par-

abolic result is the following compactness theorem:
PROPOSITION 1. Let Q be a bounded open set in Rn, u1j0 a

bounded sequence in LP(0,T:WM P(Q)) such that Ouk/Ot = Wk
+ Zk where Iwk is a bounded sequence in LP'(0,T:W-m.P'(Q))
and Izkl is sequentially weakly compact in L1(Q).

Then: Iukl is strongly compact in LP(Q).
Proposition 1 is a special case of a more general result, which

is of great interest in its own right:
THEOREM 3. Let XO, X , X2 be three Banach spaces with XO

having a compact linear embedding in X1, X1 a continuous
linear embedding in X2. Let juki be a bounded sequence in
LP(O,T:Xo) for p 2 1 with duk/dt lyingin L'(O,T:X2). Suppose
that there exists a function y:R+-- R+ with y(r)- Oas r
0 such that for any pair (s,t) in [0,T] with s < t and all k,

X |dt ( |X2 8

Then: luid is strongly compact in LP(O,T:X1).
We obtain Proposition 1 from Theorem 3 by the following

specialization: We set Xo = Wm P(Q), Xi = LP(Q), and X2=
W-i.P(Q) with j = n + m. Then Xo is compactly embedded
in XI by the boundedness of the domain Q and the compactness
part of the Sobolev embedding theorem, and X1 is continuously
embedded in X2. The hypothesis of Theorem 3 is satisfied on
the derivatives, for the IWkI by Holder's inequality and for the
1Zk1 by the Dunford-Pettis theorem (because for a suitable
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function -y with 'y(r) 0 as r - 0, fS IIZk(S)IIL1(i) ds < _y(t -
s)) because both W-m P'(9) and L'(Q) are continuously em-
bedded in X2.

Proof of Theorem 3: If we multiply the functions Uk(t) by
t(t) with t in C'(R') such that t(t) = 1 for t < 1/2T, t(t) = 0 for
t > 3/4T, and note that both IOkI and j(1 -t)UkI satisfy the same
hypotheses as fUkI, it suffices to assume that for all k, Uk(t) is
defined for all t > 0 and has its support in [0,T).

Let j be a nonnegative function in DO(R1) with support in [0,11
such that fSj(s) ds = 1. For each 6 > 0, we set jb(s) =
b-1j(&-1s). For each k and 6, we define

Vk,(t) =Mj5(S)Uk(t + s) ds.

Because IUki is a bounded sequence in LP(O,T:Xo), it follows
that Ivk,6 is bounded in LP(0,T:X0) for all k and all 6 > 0. For
each fixed 6 > 0, vk,3 I is a bounded sequence in C'(0,T:Xo) and
by the compactness of the embedding of Xo into X1, tVk,sj for
fixed 6 is strongly compact in LP(0,T:X1). Hence, it suffices to
show that SfTIuk(t)-Vk,6(t)II§1 dt -0 as 6 - 0, uniformly in
k.

Because X0 is compactly embedded in X1 and X1 is contin-
uously embedded in X2, for each c > 0 there exists K, such that
for allu inX0, |IuII|1 < eIui|Ko + Ke.i|uII 2 Hence

II1Uk(t) - Vkb(t)IIK1 < cE
T

S Iuk(t)I1Ko
+ IIVk.S(t)IIjoidt)

+ K go Uk(t) - Vk,6(t)I2 dt

The first term is bounded by EM. On the other hand, for t in
[0,T]
Uk(t) - Vkb(t)IIX2 < SUP0<,<bI1Uk(t) - Uk(t + s)11X2

< k, |dd (r) ||dr < -y(6).dt X
Hence, choosing E > 0 sufficiently small and then 6 > 0 small,
the desired conclusion follows. q.e.d.

Definition 1: Let Q be an open subset of Rn. For each 6 >
0, let Q, = IxI x e Q, dist(x,bdry(Q)) < 61. Then Q is said to
satisfy (s) if there exists C > 0, So> 0, such that for 0 < 6 < bo
and all sp in b(Q),

k1jVdx _ C6P f |V7pPdx.
We use the following approximation result in the proof of

Theorems 1 and 2:
PROPOSITION 2. Let Q be an open subset of Rn that satisfies

(s), and let H be a continuous, nonnegative, convex function
on the reals with H(0) = 0. Let u be an element of
LP(0,T:Wm P(Q)) for some p > 1 with H(u) lying in L'(Q).

Then there exists a sequence Jvjj in C(0,T,O(Q[)) with Ovj/Ot
e L2, vj(0) = Ofor each j such that v; converges strongly to u
in LP(0,T:WoP(Q)), vj converges a.e. to u in Q, H(vj) converges
strongly to H(u) in L'(Q), and

lim
t

(s),vj(s) -u(s)) ds _< O

for all t in [0,T].
We apply Proposition 2 to the convex function H(r) =

f &h(s)ds, in which h(r) is the nondecreasing continuous
function of condition (iv) with h(O) = 0. Then H satisfies the
conditions of Proposition 2, and H' = h. Suppose that u is an
element of LP(O,T:Wm'P(Q)) with ug(u) in L1(Q). Because

0 < H(u) < uh(u) < Cug(u) + CluIP + Clul,

it follows that uh(u) and H(u) lie in L 1(Q). If we consider the
sequence jv I described by the conclusions of Proposition 2,
then (g(u)v1)+ converges a.e. on Q to ug(u). On the other hand,
the subgradient relation H(r) - H(s) > h(s)(r - s) for all r and
s implies that (h(s)r)+ < H(r) + sh(s). Hence

(g(u)vj)+ < (h(u)vj)+ < H(v;) + uh(u)
where the bounding sequence is strongly convergent in L 1(Q).
Hence for any t in [0,T],

g(u)vj < (g(u)vj)+ - Wug(u).

Proof of Theorem 1: Let gk be the truncation of g at level
k. By the corresponding existence theorem for regular parabolic
problems, for each k there exists uk in LP(O,T:Wo'P(Q)) n
C(0,T:L2(Q)), u(0) = 0, such that

k+ A(uk) + gk(Uk) f

Moreover, for each v in LP(O,T:Wo'P(Q)) r C'(0,T:L2(Q)) n
L (Q) with v(0) = 0, we have for all t in [0,T],

1/2||uk(t) - Lv(t)VRQ) + J < As(uk(s)),uk(s) - v(S) > ds

+ gk(Uk)(Uk - v) = < f(s),uk(s) - v(s) > ds

+ jt (s),v(s) - uk(s))ds. [5]

In particular, if we set v(t) 0, it follows as in the elliptic case
that IUkl is a bounded sequence in LP(O,T:Wo'P(Q)) and in
L-(O,T:L2(f2)) and that lUkgk(Uk)} is bounded in L'(Q). In
particular, fgk(Uk)I is sequentially weakly compact in L 1(Q).
We may now apply the compactness result of Proposition

1 to extract an infinite subsequence (again denoted by $uk ) such
that uk converges weakly to u in LP(OT:W' P(Q)) and strongly
to u in LP(Q). We may also assume that uk converges to u a.e.
in Q, gk(Uk) converges to g(u) strongly in L1(Q), and, for t
outside of a null set N, uk(t) converges strongly to u(t) in L2(Q).
The limit function u lies in LP(0,T:Wo P(Q)) ci L(0,T:L2(g)),
g(u) lies in L 1(Q), and, by Fatou's Lemma, ug(u) lies in L '(Q).
We may also assume that A(uk) converges weakly in LP'
(0,T:W-m.P'(Q)) to some w. In the sense of distributions on
Qu

du + w + g(u) =f
Hence, it suffices to prove that w = A(u) and that Eq. 4
holds.

If we transform Eq. 5 above, we see that
t

S <A.(uk(s))Auk(s) - u(s) > ds

+ 5 $gk(Uk)Uk -g(U)Uj = Jk(v) + Rk(v)

with
t

Jk(V) = < f(s),uk(s)-V(S) > -<A8(Uk(s)),U(s)

-v(s) > + (dt (s),v(s)-Uk(S) -ds-'121Iuk(t) - Lv(t)L21

Rk(v) = jgk(Uk)V - g(u)Uj.
For t outside N, Jk(v) converges to J(v), in which

J(v) = 5 {< f(s) -w(s),U(s) -(S)>
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+dt (s),v(s) - u(s))}ds - '/211u(t) - v(t)112.
Moreover, Rk(v) converges to R(v) given by

R(v) = jg(u)v- g(u)uj.

Consider the sequence $vjI corresponding to u in the sense

of Proposition 2 with respect to the convex function H.
Then

R(vi) < I (g(u)vj)+ ug(u)j 0.

Furthermore
lim J(vj) < O.

Hence for all t outside of N,

lim < As(uk(s)),Uk(s)- u(s) > ds

+ $gk(Uk)Uk - g(u)uj < 0.

Because

imi $gk(Uk)Uk - g(u)uI > 0,
Qt

it follows that

ilmrn < As(Uk (s)),Uk(S)- u(s) > ds < 0.

Applying a slight variant of the pseudomonotonicity argument
of ref. 2, it follows that A(Uk) converges weakly to A(u) in
LP'(0,T:W-m.P/(Q)). Moreover,

t

<A (Uk (s )),Uk (s )-u (s )> ds -O

and

S < Ak(Uk(S)),Uk(S)> ds - 5 < A(u(s)),u(s) > ds.

In particular, it follows that

i-m 5 gk(uk)uk < S g(u)u,
Qt Qt

so that

gk(Uk)Uk g(u)u.

Finally, taking the limit of Eq. 5 with v = 0, we find that, for
t outside of N,

112Du(t)112 + <A,(u(s)),u(s) > ds

+ 5 ug(u)= < f(s),u(s)> ds.

Hence, I1U(t)1IL2 is identical with a continuous function for t $
N. It follows immediately that if we redefine u on N, the re-
sulting function lies in C(O,T:L2(Q)) and Eq. 4 holds for all t
in [0,T]. q.e.d.
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