Proc. Natl. Acad. Sci. USA
Vol. 76, No. 1, pp. 38-40, January 1979
Mathematics

Strongly nonlinear parabolic initial-boundary value problems

(Dirichlet boundary conditions/compactness theorems/approximation theorems with convex side conditions)

HaIM BREZIS* AND FELIX E. BROWDER?

*Université de Paris VI, Paris 75005, France; and tDepartment of Mathematics, University of Chicago, Chicago, Illinois 60637

Contributed by Felix E. Browder, October 23, 1978

ABSTRACT  An existence and uniqueness result is presented
for the solution of a parabolic initial?[;oundary value problem
under Dirichlet null boundary conditions for a general parabolic
equation of order 2m with a strongly nonlinear zeroth-order
perturbation. This is the parabolic generalization of a class of
elliptic results considered earlier by the writers and others and
is based upon a new compactness theorem.

Let Q be a bounded open set in R, (n = 1), Q the cylinder
X [0,T] for a given T > 0. Consider the quasilinear parabolic
partial differential equation of order 2m on Q, (m 2 1), of the
form

du
S+ Adw) + glatu) = fst) iy
with the initial-boundary conditions
u(x,0) =0 forx in Q; %’% (x,t)
=0forxinbdry(Q),t>0,0<j<m-—-1 [2]

(N being the normal derivative). Using the conventional
notation (as described, for example, in ref. 1), A, for each ¢ in
[0,T] is an elliptic operator of order 2m in the generalized di-
vergence form

Ai(u) = X |81 <m(—=1)IPIDPAg(x,ty, ... . D™u) (3]

with the coefficient functions Ag(x,¢,£) of x in Q, ¢ in [0,T], and
£ = {t,: |a| < m]} continuous in £ and measurable in (x,t).

In a preceding paper (1), the writers studied the Dirichlet
problem for the elliptic equation A(u) + g(x,u) = f(x). Here,
we consider the corresponding parabolic problem under the
assumption that A, is a regular elliptic operator in the Sobolev
space W™-P(Q) for a given exponent p > 2—i.e., satisfies the
following three conditions:

(#) Thereexistsc, = 0, hoin LP'(Q), (p’=p/(p — 1)), such
that

|Ac(x,2,8)] < cof| £]P7 + holx,t)}
for all (x,t,£).
(#) For (x,t) outside of a null set, all lower-order jets 7, and
§# $#,
2|ﬂ| = m[Aﬁ(x’tan, g') - Aﬁ(xat)ﬂa g-#)](g-ﬂ - g‘ﬂ#) >0.
(##1) There exists ¢; > 0, hy in LY(Q) such that for all
(x,t,£)

Y81 < mAp(xt.E)Es = c1|€|P — hy(x,t).

For the strongly nonlinear perturbing term g(x,t,u), we as-
sume no a priori growth restriction, but aside from the usual
condition that g(x,t,u) is measurable in (x,¢), continuous in u,
we impose the following set of conditions:
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(iv) There exists a continuous nondecreasing function h:R!
— R! with h(0) = 0 such that for all (x,t) in Q,r in R1, and a
fixed C

rg(x,t,r) = 0; |g(x,t,r)| < |h(r)|; |h(r)|
< Cflglxtr)| + |r]P~ + 1}

The following two theorems, for the first of which we sketch
the most important steps in the proof, are our basic result for
this parabolic case:

THEOREM 1. Let Q be a bounded open subset of R™ whose
boundary satisfies the mild smoothness condition (s) of Def-
inition 1 below, and consider a parabolic equation 1 satisfying
the conditions i, ii, iii, and iv for a given p 2 2. Let f be a dis-
tribution in LP (0, T:W—mP(Q)).

Then: There exists u in LP (0,T:WF?Q)) n C(0,T:L%(Q))
with u(0) = 0 such that g(u) and ug(u) lie in LY(Q) that satis-
fies the equation 1 with the additional condition:
For0<t<T,

2 lu®lie + f' < A6 > ds

+ { ug) = f "<Hs)uls) > ds [4]
Qt 0
(in which Q, = Q X [0,t]). )

THEOREM 2. If, in addition, g(x.t,r) is nondecreasing in r
and each A, is monotone, the solution u of Theorem 1 is
uniquely determined by {.

The most important new ingredient in the proof of the par-
abolic result is the following compactness theorem:

PROPOSITION 1. Let Q be a bounded open set in R®, {u)} a
bounded sequence in LP(0,T:WJP(Q)) such that duy /ot = wy
+ z) where {w,]} is a bounded sequence in LP'(0,T:W—mr(Q))
and {z)} is sequentially weakly compact in LY(Q).

Then: {uy} is strongly compact in LP(Q).

Proposition 1 is a special case of a more general result, which
is of great interest in its own right:

THEOREM 3. Let Xo, X, X; be three Banach spaces with Xo
having a compact livear embedding in X, X, a continuous
linear embedding in Xo. Let {uy} be a bounded sequence in
LP(0,T:Xo) for p = 1 with duy/dt lying in LY(0,T:Xy). Suppose
that there exists a function v:R* — R* with y(r) > 0asr —
0 such that for any pair (s,t) in [0,T] with s < tand all k,

duy

J:t dt ®

Then: {uy} is strongly compact in LP(0,T:X;).

We obtain Proposition 1 from Theorem 3 by the following
specialization: We set Xo = WI*?(Q), X; = LP(Q), and X3 =
W—£2(Q) with § = n + m. Then X, is compactly embedded
in X by the boundedness of the domain Q and the compactness
part of the Sobolev embedding theorem, and X is continuously
embedded in X,. The hypothesis of Theorem 3 is satisfied on
the derivatives, for the {wi} by Holder’s inequality and for the
{zx} by the Dunford-Pettis theorem (because for a suitable

xzdr < y(t=s).
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function y with y(r) = 0asr — 0, f||zk(s)lLye)ds < v(t —
s)) because both W—m.7'(Q) and L(Q) are continuously em-
bedded in X 2.

Proof of Theorem 3: If we multiply the functions ux(t) by
£(t) with £ in C1(R1) such that £(t) = 1 fort < 4T, £(t) = 0 for
t 2 %, T, and note that both {£u;} and {(1 — £)uy] satisfy the same
hypotheses as {uy}, it suffices to assume that for all k, ux(t) is
defined for all ¢t = 0 and has its support in [0,T).

Let j be a nonnegative function in D(R!) with support in [0,1]
such that f§j(s) ds = 1. For each 6 > 0, we set js(s) =
6~1§(671s). For each k and 6, we define

oka(t) = j;“fa(smu + 5)ds.

Because {u;} is a bounded sequence in LP(0,T:X), it follows
that {vx 5} is bounded in LP(0,T:X) for all k and all 6 > 0. For
each fixed 6 > 0, {vy 5} is a bounded sequence in C1(0,T:X) and
by the compactness of the embedding of X, into X}, {vx s} for
fixed 6 is strongly compact in L?(0,T:X;). Hence, it suffices to
ihow that fJllux(t) — vr5(t)II%, dt — 0 as 6 — 0, uniformly in

. Because X is compactly embedded in X, and X is contin-
uously embedded in X, for each ¢ > 0 there exists K, such that
for all u in Xo, [ull%, < ellullg, + K|lul%, Hence

ST o) = orato)l, < cc ( L7 ol
+ Ilvk,a(t)llmdt)

+ K7 o) = ona(0)I d.

The first term is bounded by ¢ M. On the other hand, for ¢ in
[0,T]

luk(t) = ok 5(t)llx, < supo<s<sllu(t) — uk(t + s)lx,

k+6 M
< j: 0 || 4 <0

Hence, choosing ¢ > 0 sufficiently small and then 6 > 0 small,
the desired conclusion follows. q.e.d.

Definition 1: Let Q be an open subset of R". For each 6 >
0, let Q5 = {x| x € Q, dist(x,bdry(2)) < 8}. Then Q is said to
satisfy (s) if there exists C > 0, 6o > 0, such that for 0 < 8 < 6
and all ¢in D(Q),

f ]¢|descarf |V o|Pds.
Qs Qcs

We use the following approximation result in the proof of
Theorems 1 and 2:

PROPOSITION 2. Let Q be an open subset of R" that satisfies
(s), and let H be a continuous, nonnegative, convex function
on the reals with H(0) = 0. Let u be an element of
LP(0, T:-W§-X(Q)) for some p = 1 with H(u) lying in L1(Q).

Then there exists a sequence {v} in C(0,T,D(Q)) with dv;/ot
€ L2, v{(0) = 0 for each j such that v;converges strongly to u
in LP(0, T:-Wg-Q)), v; converges a.e. to u in Q, H(v;) converges
strongly to H(u) in LY(Q), and

lim j;t (d?‘tlj (s)vi(s) — u(s)) ds<0

forall tin [0,T].

We apply Proposition 2 to the convex function H(r) =
S 5h(s)ds, in which h(r) is the nondecreasing continuous
function of condition (iv) with h(0) = 0. Then H satisfies the
conditions of Proposition 2, and H’ = h. Suppose that u is an
element of LP(0,T:W 3*?(Q)) with ug(u) in L1(Q). Because

0 < H(u) < uh(u) < Cug(u) + C|u|? + C|u],
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it follows that uh(u) and H(u) lie in L1(Q). If we consider the
sequence {v;} described by the conclusions of Proposition 2,
then (g(u)o 5* converges a.e. on Q to ug(u). On the other hand,
the subgradient relation H(r) — H(s) = h(s)(r —s) for all r and
s implies that (h(s)r)* < H(r) + sh(s). Hence

(gwoy)* < (h(u)o)* < H(vy) + uh(u)

where the bounding sequence is strongly convergent in L1(Q).
Hence for any ¢ in [0,T],

S, gwn s . ewr)s = f ugw)

Proof of Theorem 1: Let g be the truncation of g at level

k. By the corresponding existence theorem for regular parabolic
problems, for each k there exists ux in LP(0,T:-W§P(Q)) n
C(0,T:L%()), u(0) = 0, such that

du

a—tk + A(uk) + gr(uk) = f.
Moreover, for each v in LP(0,T:-WT?(Q)) n CY(0,T:L%(Q)) n
L=(Q) with v(0) = 0, we have for all ¢ in [0,T],

Yollug() — o(t) 2 e + fo "< Ay(uk(s))uk(s) — ols) > ds

+ j;‘gk<uk>(uk—o)= S < f©m66) = 066) > ds
+ (2 0000) - ) |ds. 15)

In particular, if we set v(¢) = 0, it follows as in the elliptic case
that {u,} is a bounded sequence in L?P(0,T:-W§+P(Q)) and in
L=(0,T:L%()) and that {uzgi(ux)} is bounded in L(Q). In
particular, {gi(ux )} is sequentially weakly compact in L1(Q).
We may now apply the compactness result of Proposition
1 to extract an infinite subsequence (again denoted by {ux}) such
that u; converges weakly to u in LP(0,T:WJ*P(Q)) and strongly
tou in LP(Q). We may also assume that u; convergestou a.e.
in Q, gx(ux) converges to g(u) strongly in L1(Q), and, for ¢
outside of a null set N, ux(t) converges strongly to u(t) in L%Q).
The limit function u lies in LP(0,T:WJ*?(Q)) n L=(0,T:L%)),
g(u) lies in LY(Q), and, by Fatou’s Lemma, ug(u) lies in L {Q).
We may also assume that A(ui) converges weakly in LP’
(0,T:W—m.7'(Q)) to some w. In the sense of distributions on

>

du -
-a—t+w+g(u)—f.

Hence, it suffices to prove that w = A(u) and that Eq. 4
holds.
If we transform Eq. 5 above, we see that

j; < Ay (uk(s)).uk(s) — u(s) > ds
+ j; {ek(ue)ux — g(u)u} = Ju(o) + Re(v)
with
t
k(o) = ﬁ {< F(s).uk(s) = v(s) > — <Aq(ug(s)),(s)
—o(s)> + (% (s),0(s) — “k(s))] ds — Yollug(t) = o(t) |}«
Ry(o) = j; {gk(ue)o — g(w)u

For t outside N, Ji(v) converges to J(v), in which
Jo= {< £(6) = w(s)u(s) = o(s) >
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+ % (s),0(s) — u(s))lds — Yollu(t) = o(t) |12

Moreover, Ri(v) converges to R(v) given by
Rw) = letw)o — gulul

Consider the sequence {v;} corresponding to u in the sense
of Proposition 2 with respect to the convex function H.
Then

< + - —
Rw) < [ Hgw)* ~uglw) =0
Furthermore

m ] (Uj) <0.
Hence for all ¢ outside of N,

fim j; "< A (ur(s)) k() — us) > ds

- <
+ . ot~ gund <
Because
lim ur)ur — gu)u} = 0,
S teetwn — gl
it follows that
- t
lim f < Ag(ur(s)),ux(s) —u(s) >ds < 0.
0

Applying a slight variant of the pseudomonotonicity argument
of ref. 2, it follows that A(u;) converges weakly to A(u) in
L7’(0,T:W—m™?’(Q)). Moreover,

j;' <Ay (uk(s)),uk(s) — u(s) >ds >0
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and

f‘<A (ur(s))ug(s) > ds — f‘<A(u(s))u(s)>ds
o k\Uk LUk 0 > .

In particular, it follows that

lim j;‘ gk(uk)ux < j;, g(uu,

j;‘ &k(up)ur — J;‘ glu)u.

Finally, taking the limit of Eq. 5 with v = 0, we find that, for
t outside of N,

so that

Wollu(e)l2 + j; "< A (u)uls) > ds

+ J;‘ug(u)=‘j;t<f(s),u(s)>ds.

Hence, |lu(t)|L, is identical with a continuous function for ¢t ¢
N. 1t follows immediately that if we redefine u on N, the re-
sulting function lies in C(0,T:L%(2)) and Eq. 4 holds for all ¢
in [0,T]. q.e.d.
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