There are certain relations between the spaces $\left\{H_{\alpha} \mid \alpha \geq 0\right\}$ for different indices:
Lemma: Let $\alpha<\beta$. Then

$$
\|x\|_{\alpha} \leq\|x\|_{\beta}
$$

and the embedding $H_{\beta} \rightarrow H_{\alpha}$ is compact.

Lemma: Let $\alpha<\beta<\chi$. Then

$$
\|x\|_{\beta} \leq\|x\|_{\alpha}^{\mu}\|x\|_{\gamma}^{\nu} \text { for } x \in H_{\gamma}
$$

with $\mu=\frac{\gamma-\beta}{\gamma-\alpha}$ and $\nu=\frac{\beta-\alpha}{\gamma-\alpha}$.

Lemma: Let $\alpha<\beta<\gamma$. To any $x \in H_{\beta}$ and $t>0$ there is a $y=y_{t}(x)$ according to
i) $\quad\|x-y\|_{\alpha} \leq t^{\beta-\alpha}\|x\|_{\beta}$
ii) $\quad\|x-y\|_{\beta} \leq\|x\|_{\beta},\|y\|_{\beta} \leq\|x\|_{\beta}$
iii) $\quad\|y\|_{\gamma} \leq t^{-(\gamma-\beta)}\|x\|_{\beta}$.

Corollary: Let $\alpha<\beta<\gamma$. To any $x \in H_{\beta}$ and $t>0$ there is a $y=y_{t}(x)$ according to
i) $\quad\|x-y\|_{\rho} \leq t^{\beta-\rho}\|x\|_{\beta} \quad$ for $\quad \alpha \leq \rho \leq \beta$
ii) $\quad\|y\|_{\sigma} \leq t^{-(\sigma-\beta)}\|x\|_{\beta} \quad$ for $\beta \leq \sigma \leq \gamma$.

Remark: Our construction of the Hilbert scale is based on the operator A with the two properties i) and ii). The domain $D(A)$ of A equipped with the norm

$$
\|A x\|^{2}=\sum_{i=1} \lambda_{i}^{2}\left(x, \varphi_{i}\right)^{2}
$$

turned out to be the space H_{2} which is densely and compactly embedded in $H=H_{0}$. It can be shown that on the contrary to any such pair of Hilbert spaces there is an operator \boldsymbol{A} with the properties i) and ii) such that

$$
D(A)=H_{2} \quad R(A)=H_{0} \text { and }\|x\|_{2}=\|A x\| .
$$

We give three examples of differential operator and singular integral operators, whereby the integral operators are related to each other by partial integration:

Example 1: Let $H=L^{2}(0,1)$ and

$$
A u:=-u^{\prime \prime}
$$

with

$$
D(A)=\dot{W}_{2}^{2}(0,1):=\dot{W}_{2}^{1}(0,1) \cap W_{2}^{2}(0,1) .
$$

Building on the orthogonal set of eigenpairs $\left\{\lambda_{i}, \varphi_{i}\right\}$ of A_{i}, i.e.

$$
-\varphi_{i}^{\prime \prime}=\lambda_{i} \varphi_{i} \quad \varphi_{i}(0)=\varphi_{i}(1)=0
$$

it holds the inclusion

$$
D(A) \subseteq H_{A}=H_{1}=\stackrel{\circ}{W}_{2}^{1}(0,1) \subseteq L^{2}(0,1) .
$$

Example 2: Let $H=L_{22}^{*}(\Gamma)$ with $\Gamma:=S^{1}\left(R^{2}\right)$, i.e. Γ is the boundary of the unit sphere. Then H is the space of integrable periodic function in R. Let

$$
(A u)(x):=-\oint \log 2 \sin \frac{x-y}{2} u(y) d y=: \oint k(x-y) u(y) d y
$$

and

$$
D(A)=H=L_{22}^{*}(\Gamma) .
$$

The Fourier coefficients of this convolution are

$$
(A u)_{v}=k_{v} u_{v}=\frac{1}{2|v|} u_{v}
$$

i.e. it holds $D(A) \subseteq H_{A}=H_{-1 / 2}(\Gamma)$.

A relation of this Fourier representation to the fractional function is given by

$$
x-[x]-\frac{1}{2}=-\sum_{1}^{\infty} \frac{\sin 2 \pi v x}{\pi v}
$$

Remark: We give some further background and analysis of the even function

$$
k(x):=-\ln \left|2 \sin \frac{x}{2}\right|=:-\log \left|2 \sin \frac{x}{2}\right|
$$

Consider the model problem

$$
\begin{aligned}
-\Delta U=0 & \text { in } \Omega \\
U=f & \text { on } \Gamma:=\partial \Omega,
\end{aligned}
$$

whereby the area Ω is simply connected with sufficiently smooth boundary. Let $y=y(s)-s \in(0,1]$ be a parametrization of the boundary $\partial \Omega$. Then for fixed \bar{z} the functions

$$
U(\bar{x})=-\log |\bar{x}-\bar{z}|
$$

Are solutions of the Lapace equation and for any $L_{1}(\partial \Omega)$ - integrable function $u=u(t)$ the function

$$
(A u)(\bar{x}):=\oint_{\partial \Omega} \log |\bar{x}-u(t)| d t
$$

is a solution of the model problem. In an appropriate Hilbert space H this defines an integral operator , which is coercive for certain areas Ω and which fulfills the Garding inequality for general areas Ω. We give the Fourier coefficient analysis in case of $H=L_{2}^{*}(\Gamma)$ with $\Gamma:=S^{1}\left(R^{2}\right)$, i.e. Γ is the boundary of the unit sphere. Let $x(s):=(\cos (s), \sin (s))$ be a parametrization of $\Gamma:=S^{1}\left(R^{2}\right)$ then it holds

$$
|x(s)-x(t)|^{2}=\left|\binom{\cos (s)-\cos (t)}{\sin (s)-\sin (t)}\right|^{2}=2-2 \cos (s-t)=2\left(1-\cos \left(2 \frac{s-t}{2}\right)\right)=2\left[2 \sin ^{2} \frac{s-t}{2}\right]=4 \sin ^{2} \frac{s-t}{2}
$$

and therefore

$$
-\log |x(s)-x(t)|=-\log 2\left|\sin \frac{s-t}{2}\right|=k(s-t) .
$$

The Fourier coefficients k_{v} of the kernel $k(x)$ are calculated as follows

$$
k_{v}:=\frac{1}{2 \pi} \oint k(x) e^{-i v x} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|2 \sin \frac{t}{2}\right| e^{-i u t} d t=\frac{2}{2 \pi} \int_{0}^{\pi} \log \left|2 \sin \frac{t}{2}\right| \cos (v t) d t=k_{-v}
$$

As $\varepsilon \log 2 \sin \frac{\varepsilon}{2} \underset{\substack{s \rightarrow 0}}{ }$ partial integration leads to

$$
\begin{aligned}
& k_{v}=\left.\frac{1}{v \pi} \sin (v t)\right|_{0} ^{\pi}-\frac{1}{v \pi} \int_{0}^{\pi} \frac{2 \sin (t) \cos \frac{t}{2}}{2 \sin \frac{t}{2}} d t=-\frac{1}{v \pi} \int_{0}^{\pi} \frac{\sin \left(\frac{2 v+1}{2} t\right)-\sin \left(\frac{2 v-1}{2} t\right)}{2 \sin \frac{t}{2}} d t \\
& k_{v}=-\frac{1}{v \pi} \int_{0}^{\pi}\left[\frac{1}{2}+\cos (t) \cdot+\cos (v t)\right]-\left[\frac{1}{2}+\cos (t) .+\cos ((v-1) t)\right] d t=-\frac{1}{v} .
\end{aligned}
$$

Extension and generalizations

For $t>0$ we introduce an additional inner product resp. norm by

$$
\begin{gathered}
(x, y)_{(t)}^{2}=\sum_{i=1} e^{-\sqrt{x_{i}(}}\left(x, \varphi_{i}\right)\left(y, \varphi_{i}\right) \\
\|x\|_{(t)}^{2}=(x, x)_{(t)}^{2} .
\end{gathered}
$$

Now the factor have exponential decay $e^{-\sqrt{\lambda_{i} t}}$ instead of a polynomial decay in case of λ_{i}^{α}. Obviously we have

$$
\|x\|_{(t)} \leq c(\alpha, t)\|x\|_{\alpha} \text { for } x \in H_{\alpha}
$$

with $c(\alpha, t)$ depending only from α and $t>0$. Thus the (t)-norm is weaker than any α-norm. On the other hand any negative norm, i.e. $\|x\|_{\alpha}$ with $\alpha<0$, is bounded by the 0 -norm and the newly introduced (t)-norm. It holds:

Lemma: Let $\alpha>0$ be fixed. The α-norm of any $x \in H_{0}$ is bounded by

$$
\|x\|_{-\alpha}^{2} \leq \delta^{2 \alpha}\|x\|_{0}^{2}+e^{t / \delta}\|x\|_{(t)}^{2}
$$

with $\delta>0$ being arbitrary.

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of the α-norm, which can be reformulated in the form ($\mu, v>0, \mu+v>1$)

$$
\|x\|_{\beta}^{2} \leq v \varepsilon\|x\|_{\gamma}^{2}+\mu e^{-v / \mu}\|x\|_{\alpha}^{2}
$$

applying Young's inequality to

$$
\|x\|_{\beta}^{2} \leq\left(\|x\|_{\alpha}^{2}\right)^{\mu}\left(\|x\|_{\gamma}^{2}\right)^{\nu} .
$$

The counterpart of lemma 4 above is
Lemma: Let $t, \delta>0$ be fixed. To any $x \in H_{0}$ there is a $y=y_{t}(x)$ according to
i) $\quad\|x-y\| \leq\|x\|$
ii) $\quad\|y\|_{1} \leq \delta^{-1}\|x\|$
iii) $\quad\|x-y\|_{(t)} \leq e^{-t / \delta}\|x\|$.

Non Linear Problems

Let the problem be given by

$$
F(x, u)=0
$$

with the (roughly) regularity assumptions:
i) there is a unique solution
ii) F, F_{u} are Lipschitz continuous.

The approximation problem is given by:

$$
\text { find } \varphi \in S_{h} \quad(F(\cdot, \varphi), \chi)=0 \text { for } \chi \in S_{h} \text {. }
$$

Error analysis

Put

$$
f(x)=F_{u}(x, u(x)) \quad \text { and } \quad \varphi=u-e
$$

Then

$$
(f e, \chi)=(R, \chi)
$$

with a remainder term

$$
R:=R(e):=F(\cdot, u-e)+f e
$$

resp.

$$
(f e, \chi)=(f u-R(e), \chi) .
$$

Let P_{h} denote the L_{2} - projection related to $(f \cdot, \cdot)=(R, \chi)$, then
resp.

$$
\begin{gathered}
\varphi=P_{h}\left(u-\frac{1}{f} R(e)\right) \\
\left.e=\left(I-P_{h}\right) u+P_{h} \frac{1}{f} R(e)\right)=: T(e) .
\end{gathered}
$$

Therefore the difference $e=u-e$ is a fix point of T.
Let

$$
B_{k \bar{\varepsilon}}:=\left\{e\|e\|_{L_{\infty}} \leq \kappa \bar{\varepsilon}\right\} \text { and } \bar{\varepsilon}:=\inf _{\chi \in S_{h}}\|u-\chi\|_{L_{\infty}} .
$$

With that some key properties of T are summaries in the following

Lemma:

i) There is a $\kappa>0$ such that for $\bar{\varepsilon}$ sufficiently small, then T maps the ball $B_{\kappa \bar{\varepsilon}} \overline{\bar{i}}$ into itself.
ii) for $\bar{\varepsilon}$ sufficiently small, T is a contradiction in $B_{\kappa \bar{\varepsilon}}$.

Proof: i) Because of P_{h} and f^{-1} are being bounded it holds

$$
\left\|I-P_{h}\right\|_{L_{\infty}} \leq c_{1} \inf _{\chi \in S_{h}}\|u-\chi\|_{L_{\infty}}=\bar{\varepsilon}
$$

and

It is

$$
\left\|P_{h}\left(\frac{1}{f} R(e)\right)\right\|_{L_{o}} \leq c_{2}\|R(e)\|_{L_{0}} .
$$

$$
\|F(\cdot, u-e)+f e\|_{L_{\infty}} \leq c_{3}\| \| \|_{L_{e}}^{2}=c_{3} K^{2} \bar{\varepsilon}^{2}
$$

with c_{3} being the Lipschitz constant of F_{u}. Therefore

$$
\|T(e)\|_{L_{\infty}} \leq c_{1} \bar{\varepsilon}+c_{3} c_{2} \kappa^{2} \bar{\varepsilon}^{2} .
$$

Now fixing $\kappa>c_{1}$ and choosing $\bar{\varepsilon}_{0}$ according to $\kappa=c_{1}+c_{3} c_{2} \kappa^{2} \bar{\varepsilon}_{0}$ gives i)
ii) it holds

$$
\left\|T\left(e_{1}\right)-T\left(e_{2}\right)\right\|_{L_{o}}=\| P_{h}\left(\frac{1}{f}\left(R\left(e_{1}\right)-R\left(e_{2}\right)\right)\left\|_{L_{\omega_{0}}} \leq c_{2}\right\| R\left(e_{1}\right)-R\left(e_{2}\right) \|_{L_{0}}\right.
$$

and

$$
R\left(e_{1}\right)-R\left(e_{2}\right)=F\left(\cdot, u-e_{1}\right)-F\left(\cdot, u-e_{2}\right)=\left(F_{u}(\cdot, \vartheta)-F_{u}(u)\left(e_{1}-e_{2}\right) .\right.
$$

With

$$
F_{u}(\cdot, \vartheta)=F_{u}\left(\cdot, u-\vartheta e_{1}-(1-\vartheta) e_{2}\right)
$$

one gets

$$
\left\|F_{u}(\cdot, \vartheta)-F_{u}(\cdot, u)\right\| \leq \kappa \bar{\varepsilon} c_{3} .
$$

Choosing

$$
\bar{\varepsilon}<\operatorname{Min}\left(\varepsilon_{0}, \frac{1}{c_{2} c_{3} \kappa}\right)
$$

then proves ii).
Consequence: The operator T has a unique fix-point in the ball $B_{k \overline{\bar{c}}}$
From this it follows the
Theorem: The FEM admits the error estimate

$$
\|u-\varphi\|_{L_{\infty}} \leq c \inf _{\chi \in S_{h}}\|u-\chi\|_{L_{\infty}} .
$$

