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1. Introduction and summary. The present paper is concerned
with the so-called Stokes operator described below. Our objective is
to prove a theorem concerning domains o ractional powers of the
Stokes operator. This theorem has some applications to the Navier-
Stokes equation [4], as is expected from important roles played by the
fractional powers of the Stokes operator in recent works on the Navier-
Stokes equation. For instance, see Sobolevskii [11, 12], Kato-Fujita
[7], Fujita-Kato [3], and Masuda [10]. Moreover, we hope that the
theorem is of some interests also rom the view point of theory of frac-
tional powers of operators and theory of interpolation of spaces.

Let/2 be a bounded domain in R with smooth boundary 32. By
L we denote L(tg) of real m-vector functions defined in /2. C, is the
set o all vector unctions e C(2) with div =0 and supp 2.
We put

H-the closure of C, in L(9),
H--the closure of C, in W(t).

Here, W(tg) means the Sobolev space of order 1. The orthogonal pro-
jection from L onto H is denoted by P. The operator A0=--Pz with
domain C, is positive and symmetric in the Hilbert space H. The

Friedrichs extension A of A0 is called the Stokes operator in/2. A is
positive and self-adjoint. It should be noted that Au-Pf (f e L)
implies that

u-p=--f in/2,
(1.1) t div u--0 in/2,, ul=O
with some scalar unction p. Actually, it is known [2, 8] that
(1.2) _q)(A)-- Wg(tg) HI,
where _(A) is the domain of the operator A. On the other hand, we
put B A with
(1.3) (B)-- W(9) gl H1,
where H is the set of all u e W(9) satisfying ul0=0. Obviously, B
is a positive self-adjoint operator in L.

Our theorem now reads:
Theorem 1.1. Let A and B be as above. Then for any in

0 a 1, we have
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(1.4) .q)(A
Remark 1.2. For u e L-- L2(tg) the condition u e He is equivalent

to (u, Vp)=0 (vVp L), and furthermore, equivalent to that div u-0
and the normal component of u vanishes on 3/2. On the other hand,
concrete characterizations of domains of B"= (-)" have been given by
Fujiwara [5], Grisvard [6] and some others. Thus (1.4) enables us to
deduce criterions for u to belong to (A") which, however, will not be
stated here explicitly.

2. Proof of Theorem 1.1. We shall make use o the following
lemma concerning the trace space which is a special case of a theorem
due to Lions [9].

Lemma 2.1. Let X be a Hilbert space and let S be a positive
self-ad]oint operator in X. (S) is the domain of S regarded as a

Hilbert space with the graph norm. Then for a in O a l, we have

(1(2.1) .q)(S-) T 2, - (S), X

We recall that a
2 2there exists a u: [0, c)-XoX such that

(2.2) tu e L2(O, ;X0),
(2.3) flu’ e L2(O, c X1),
and u(0)= a. Here X0X are two Banach spaces such that X0 is dense
in X and the injection is continuous.

The ollowing lemma has been proved by Cattabriga [2] and
Ladyzhenskaya [8], and also can be read off rom the proof ot, general
theorems in Agmon-Douglis-Nirenberg [1]. (Notice (1.1).)

Lemma 2.2. There exist constants C1 and C2 such that

for all
Proof of Theorem 1.1. By Lemma 1.1 we have

9)(A) ’ ., --; (A,o,
(B) , _- N(B), L.

From this and in view of HcL and .(A)c_@(I?), it is easy to see
.(A)c(B)H. Thus we have to show the other inclusion. To
this end, we first introduce the operator I’(B)-.(A) by setting

(2.5) k--A-IPA=A-PB ( e .(B)).
By virtue of (2.4) we can easily show that : admits of a bounded
extension from L to H. It should be noted that K= 2or e H.
Now we take an a rom (B) ( H. Since a e _(B), there exists a

u:[0, )-.q)(B) such that
(2.6) t’n-u e L(O, c _q)(B)),
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(2.7) t’/2-u e L2(0, c L),
and u(+ 0) a. We put v(t) Ku(t). Then we have v(+ 0) Ka= a,
for a e H. Obviously, v(t) .(A) and v’(t) e H for almost every t.
We have also

Here we use the symbol C or various positive constants indifferently
and have made use of the act that A- and B- are bounded. We have

since K is bounded. Combining these estimates with (2.6) and (2.7),
we notice

t’/-"v e L(O, 2(A))
and

t/-"v e L(O, H).

Consequently, =v(O) T 2,- (A),H (A), whieh com-

pletes the roof.
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