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Introduction

Formulated and intensively studied at the beginning of the nineteenth century, the classi-
cal partial differential equations of mathematical physics represent the foundation of our
knowledge of waves, heat conduction, hydrodynamics and other physical problems. Their
study prompted further work by mathematical researchers and, in turn, benefited from the
application of new methods in pure mathematics. It is a vast subject, intimately connected
to various sciences such as Physics, Mechanics, Chemistry, Engineering Sciences, with
a considerable number of applications to industrial problems.

Although the theory of partial differential equations has undergone a great development
in the twentieth century, some fundamental questions remain unresolved. They are essen-
tially concerned with the global existence, regularity and uniqueness of solutions, as well
as their asymptotic behavior.

The immediate object of this chapter is to review some improvements achieved in the
study of a celebrated nonlinear partial differential system, the incompressible Navier–
Stokes equations. The nature of a turbulent motion of a fluid, an ocean for instance, or
the creation of a vortex inside it, are two typical problems related to the Navier–Stokes
equations, and they are still far from being understood.

From a mathematical viewpoint, one of the most intriguing unresolved questions con-
cerning the Navier–Stokes equations and closely related to turbulence phenomena is the
regularity and uniqueness of the solutions to the initial value problem. More precisely,
given a smooth datum at time zero, will the solution of the Navier–Stokes equations
continue to be smooth and unique for all time? This question was posed in 1934 by
Leray [148,149] and is still without answer, neither in the positive nor in the negative.
Smale includes the uniqueness and regularity question for the Navier–Stokes equations as
one of the 18 open problems of the twentieth century [212].

There is no uniqueness proof except for over small time intervals and it has been ques-
tioned whether the Navier–Stokes equations really describe general flows. But there is no
proof for nonuniqueness either.

Maybe a mathematical ingenuity is the reason for the missing (expected) uniqueness
result. Or maybe the methods used so far are not pertinent and the refractory Navier–Stokes
equations should be approached with a different strategy.

Uniqueness of the solutions of the equations of motion is the cornerstone of classical
determinism [74]. If more than one solution were associated to the same initial data, the
committed determinist will say that the spaceof the solutions is too large, beyond the real
physical possibility, andthat uniqueness can be restored if the unphysical solutions are ex-
cluded. On the other hand, anarchists will be happy to conclude that the laws of motion
are not verified and that chaos reigns. More precisely, a nonuniqueness result would rep-
resent such an insulting paradox to classicaldeterminism, that the introduction of a more
sophisticated model for the study of the motion of a viscous fluid would certainly be justi-
fied [39,42,84,119].

Thirty years ago, Shinbrot wrote [211]:

Without the d’Alembert (and other paradoxes), who would have thought it necessary to study more
intricate models than the ideal fluid? However, it is usually through paradoxes that mathematical
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work has the greatest influence on physics. In terms of existence and uniqueness theory, this means
that the most important thing to discover is what is not true. When one proves the Navier–Stokes
equations have solutions, the physicist yawns. If one can prove these solutions are not unique
(say), he opens his eyes instead of his mouth. Thus, when we prove existence theorems, we are
only telling the world where paradoxes are not and perhaps sweeping away some of the mist that
surrounds the area where they are.

If the problem of uniqueness relates to the predictive power aspect of the theory, the
existence issue touches the question of the self-consistency of the physical model involved
in the Navier–Stokes equations; if no solution exists, then the theory is empty.

In the nineteenth century, the existence problems arising from mathematical physics
were studied with the aim of finding exact solutions to the corresponding equations. This
is only possible in particular cases. For instance, very few exact solutions of the Navier–
Stokes equations were found and, except for some exact stationary solutions, almost all of
them do not involve the specifically nonlinear aspects of the problem, since in general the
corresponding nonlinear terms in the Navier–Stokes equations vanish.

In the twentieth century, the strategy changed. Instead of explicit formulas in particular
cases, the problems were studied in all their generality. This led to the concept of weak
solutions. The price to pay is that only the existence of the solutions can be ensured. In
fact, the construction of weak solutions as the limit of a subsequence of approximations
leaves open the possibility that there is more than one distinct limit, even for the same
sequence of approximations.

The uniqueness question is among the most important unsolved problems in fluid me-
chanics: “Instant fame awaits the person who answers it. (Especially if the answer is
negative!)” [211]. Moreover, as for the solutions of the Navier–Stokes equations, such a
uniqueness result is not available for the solutions of the Euler equations of ideal fluids, or
the Boltzmann equation of rarefied gases, or the Enskog equation of dense gases either.

A question intimately related to the uniqueness problem is the regularity of the solution.
Do the solutions to the Navier–Stokes equations blow-up in finite time? The solution is
initially regular and unique, but at the instantT when it ceases to be unique (if such an
instant exists), the regularity could also be lost.

One may imagine that blow-up of initially regular solutions never happens, or that it
becomes more likely as the initial norm increases, or that there is blow-up, but only on a
very thin set of probability zero. Nobody knows the answer and the Clay Mathematical
Institute is offering a prize for it [80]. As Fefferman [80] remarks, finite blow-up in the
Euler equation of an “ideal” fluid is an open and challenging mathematical problem as it is
for the Navier–Stokes equations. Constantin [67] suggests that it is finite time blow-up in
the Euler equations that is the physically more important problem, since blow-up requires
large gradients in the limit of zero viscosity. The best result in this direction concerning the
possible loss of smoothness for the Navier–Stokes equations was obtained by Caffarelli,
Kohn and Nirenberg [31,151], who proved that the one-dimensional Hausdorff measure of
the singular set is zero.

After providing such a pessimistic scenery, revealing our lack of comprehension in the
study of the Navier–Stokes equations, let usbriefly recall here some more encouraging,
even if partial, research directions. Roughly speaking, we can summarize the discussion
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by saying that if “some quantity” turns out to “be small”, then the Navier–Stokes equa-
tions are well posed in the sense of Hadamard (existence, uniqueness and stability of the
corresponding solutions).

For instance, a unique global solution exists provided the data – the initial value and
the exterior force – are small, and the solution is smooth depending on smoothness of the
data. Another quantity that can be small is the dimension. If we are in dimensionn = 2, the
situation is easier than in dimensionn = 3 and completely understood [152,218]. Finally, if
the domainΩ ⊂ R3 is small, in the sense thatΩ is thin in one direction, sayΩ = ω×(0, ε),
then the question is also settled [235].

Other good news is contained in the following pages. They reflect the progress achieved
in the last seven years by approaching the Navier–Stokes equations with mathematical tools
directly taken from the harmonic analysis world. We mean the use of the Fourier transform
and its natural heirs, better suited for the study of nonlinear problems: the Littlewood–Paley
decomposition, the paraproducts, the Besov spaces and the wavelets.

Motivated by a somewhat esoteric paper of Federbush entitled “Navier and Stokes meet
the wavelets” [78], in 1995 we launched an ambitious program [34]: solve thenonlinear
Navier–Stokesequations by means ofwavelet transformandBesov spaces. Of course, at
the origin of our hopes was the remark that it is possible to solve thelinear heatequation
by Fourier transformin Sobolev spaces, a very tempting comparison indeed.

Following these ideas and this program, some important results were obtained. They
concern the existence of a global solution for highly oscillating data (Section 4), the
uniqueness of this solution (Section 5) and its asymptotic behavior, via the existence of
self-similar solutions (Section 6).

In the following pages, after recalling these results, we will realize, a posteriori, that the
harmonic analysis tools were not necessary atall for their discovery. In fact, each proof
of the previous theorem (existence, uniqueness, self-similar solutions) originally found
by means of ‘Fourier analysis methods’, more precisely, by using ‘Besov spaces’, was
followed, shortly after its publication, by a ‘real variable methods’ proof.

Temam [217] was able to construct a global solution with highly oscillating data by
using a classical Sobolev space. This solution was shown to be unique by Meyer [166],
with a proof that makes use of a Lorentz space,instead of a Besov one. Finally, Le Jan and
Sznitman [138] discovered an elementary space for the existence of self-similar solutions.

The historical details that led to each theorem and each proof are contained in the paper
entitled “Viscous flows in Besov spaces” [37], that should be considered as a companion
to this article.

1. Preliminaries

1.1. The Navier–Stokes equations

We study the Cauchy problem for the Navier–Stokes equations governing the time evolu-
tion of the velocityv(t, x) = (v1(t, x), v2(t, x), v3(t, x)) and the pressurep(t, x) of an



166 M. Cannone

incompressible viscous fluid (whose viscosity coefficient is given by the positive con-
stantν) filling all of R3 and in the presence of an external forceφ(t, x):

∂v

∂t
− ν�v = −(v · ∇)v − ∇p + φ,

∇ · v = 0,

v(0) = v0, x ∈ R3, t � 0.

(1)

Here, the external forceφ(t, x) will be considered as arising from a potentialV (t, x) in
such a way that

φ = ∇ · V (2)

which means, that

φj =
3∑

k=1

∂kVkj , j = 1,2,3. (3)

As we will describe in Section 6.4, more general types of forces can be considered, this
is done for instance in the recent paper [42,40] (for other examples see also [130,133]).

We will also assume that the viscosityν is equal to one. This can be done, without loss
of generality, because of the invariant structure of the Navier–Stokes equations and we will
return to this issue in Section 3.2.

Finally, thanks to the divergence-free property∇ · v = 0, expressing the incompressibil-
ity of the fluid, we can write(v · ∇)v = ∇ · (v ⊗ v). This remark is important because the
product of two tempered distributions is not always defined, whereas it is always possible
to take the derivative (in the distribution sense) of anL1

loc function. Thus, it will be enough
to requirev ∈ L2

loc in order to make the quadratic term∇ · (v ⊗ v) well defined.
Here and in the following, we say that a vectora = (a1, a2, a3) belongs to a function

spaceX if aj ∈ X holds for everyj = 1,2,3, and we put‖a‖ = max1�j�3 ‖aj‖. To be
more precise, we should writeX(R3) instead ofX (for instancev = (v1, v2, v3) ∈ L2

loc
meansvj ∈ L2

loc(R
3) for everyj = 1,2,3). In order to avoid any confusion, if the space

is not R3 (for example, if the dimension is 2 or if the space is a bounded domainΩb as
considered at the end of Section 5.1) we will write it explicitly (sayX(R2) or X(Ωb)).
The reason why we are mainly interested in the whole spaceR3 (or more generallyRn,
n � 2) is that we will make constant use of Fourier transform tools, that are easier to handle
in the case of the whole space (or a bounded space with periodic conditions, as in [222])
than that of a domain with boundaries. A detailed analysis of the problems that can occur
if the Navier–Stokes (or more general) equations are supplemented by the homogeneous
Dirichlet (no-slip) boundary conditions is contained in [83].

Our attention will be focused on the existence of solutionsv(t, x) to (1) in the space
C([0, T );X) that are strongly continuous functions oft ∈ [0, T ) with values in the Banach
spaceX of vector distributions. Depending on whetherT will be finite (T < ∞) or infinite
(T = ∞) we will obtain respectivelylocal or global (in time) solutions.
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Before introducing the appropriate functional setting, let us transform the system (1)
into the operator equation [30,87,117]:

dv

dt
− Av = −P∇ · (v ⊗ v) + Pφ,

v(0) = v0, x ∈ R3, t � 0,

(4)

whereA is formally defined as the operatorA = −P� andP is the Leray–Hopf orthogonal
projection operator onto the divergence-free vector field defined as follows.

We let

Dj = −i
∂

∂xj

, j = 1,2,3; i2 = −1, (5)

and we denote the Riesz transforms by

Rj = Dj (−�)−1/2, j = 1,2,3. (6)

For an arbitrary vector fieldv(x) = (v1(x), v2(x), v3(x)) onR3, we set

z(x) =
3∑

k=1

(Rkvk)(x) (7)

and define the Leray–Hopf operatorP by

(Pv)j (x) = vj (x) − (Rjz)(x) =
3∑

k=1

(δjk − RjRk)vk, j = 1,2,3. (8)

Another equivalent way to defineP is to make use of the properties of the Fourier transform
and write

(̂Pv)j (ξ) =
3∑

k=1

(
δjk − ξj ξk

|ξ |2
)

v̂k(ξ), j = 1,2,3. (9)

As such,P is a pseudo-differential operator of degree zero and is an orthogonal projec-
tion onto the kernel of the divergence operator. In other words the pressurep in (1) ensures
that the incompressibility condition∇ · v = 0 is satisfied.

Finally, making use of this projection operatorP and the semigroup

S(t) = exp(−tA), (10)

it is a straightforward procedure to reduce the operator equation (4) into the following
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integral equation

v(t) = S(t)v0 −
∫ t

0
S(t − s)P∇ · (v ⊗ v)(s)ds +

∫ t

0
S(t − s)P∇ · V (s)ds.

(11)

On purpose, we are being a little cavalier here: we shall not justify the formal transition
(1) → (4) → (11). We shall rather start from (11) and prove the existence and uniqueness
of a solutionv(t, x) for it. Then, we shall prove that this solution is regular enough to form,
with an appropriate pressurep(t, x), a classical solution of the system (1).

Since our attention will essentially be devoted to the study of the integral equation (11)
and since we will only consider the case of the all spaceR3, so that the semigroupS(t)

reduces to the well-known heat semigroup exp(t�), we will separate the different contri-
butions in (11) in the following way: the linear term containing the initial data

S(t)v0 =: exp(t�)v0, (12)

the bilinear operator expressingthe nonlinearity of the equation

B(v,u)(t) =: −
∫ t

0
exp
(
(t − s)�

)
P∇ · (v ⊗ u)(s)ds (13)

and finally the linear operatorL involving the external force

L(V )(t) =:
∫ t

0
exp
(
(t − s)�

)
P∇ · V (s)ds. (14)

The precise meaning of the integral defined by (13) in different function spaces is one
of the main problems arising from this approach and will be discussed carefully in the
following section.

Let us note here that there is a kind of competition in this integral term between the
regularizing effect represented by the heat semigroupS(t −s) and the loss of regularity that
comes from the differential operator∇ and from the pointwise multiplicationv ⊗ u. This
loss of regularity is illustrated by the following simple example: if two (scalar) functions
f andg are inH 1, their product only belongs toH 1/2 and their derivative∂(fg) is even
less regular as it belongs toH−1/2.

1.2. Classical, mild and weak solutions

As yet the existence of a global solution in time has not been proved nor disproved for a
three-dimensional flow and sufficiently general initial conditions; but as we will see in the
following pages, a global, regular solution does exist whenever the initial data are highly
oscillating or sufficiently small in certain function spaces.
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To begin with, it is necessary to clarify the meaning of “solution of the Navier–Stokes
equations”, because, since the appearance of the pioneer papers of Leray, the word “solu-
tion” has been used in a more or less generalized sense. Roughly speaking, two main types
of solutions can be distinguished: “strong solutions” (for which existence and uniqueness
are known) and “weak solutions” (for which only the existence is known).

In the following pages, we will take the term “solution” in the generic sense of classical
ordinary differential equations int with values in the space of tempered distributionsS ′,
in order to be able to use the Fourier transforms tools. This interpretation is suggested by
the notion of solution in the sense of distribution used in evolution equations. Moreover,
we will ask that the function spaceX, to which the initial datav0 belong, is such that
X ↪→ L2

loc, in order to be able to give a (distributional) meaning to the nonlinear term
(v · ∇)v = ∇ · (v ⊗ v). More generally, we will askv ∈ L2

loc([0, T );R3).
In the recent papers of Amann [1] and of Lemarié [142,145], we can count many differ-

ent definitions of solutions (see also [71]) distinguished only by the class of functions to
which they are supposed to belong:classical, strong, mild, weak, very weak, uniform weak
andlocal Leraysolutions of the Navier–Stokes equations!

We will not present all the possible definitions here but concentrate our attention on three
cases, respectively classical (Hadamard), weak (Leray) and mild (Yosida) solutions.

DEFINITION 1 (Classical). A classical solution(v(t, x),p(t, x)) of the Navier–Stokes
equations is a pair of functionsv : t → v(t) andp : t → p(t) satisfying the system (1), for
which all the terms appearing in the equations are continuous functions of their arguments.
More precisely, a classical solution is a solution to the system (1) that verifies:

v(t, x) ∈ C
([0, T );E

)∩ C1([0, T );F
)
, (15)

E ↪→ F (continuous embedding), (16)

v ∈ E 
⇒ �v ∈ F (continuous operator), (17)

v ∈ E 
⇒ ∇ · (v ⊗ v) ∈ F (continuous operator), (18)

whereE andF are two Banach spaces of distributions.

For example, ifE is the Sobolev spaceHs ands > 3/2 (thus givingHs the structure of
an algebra when endowed with the usual product of functions), we can choseF = Hs−2,
because�v ∈ Hs−2 and∇ · (v ⊗ v) ∈ Hs−1 ↪→ Hs−2.

As we recalled in the Introduction, it is very difficult to ensure the existence of classical
solutions, unless we look for exact solutions (that do not involve the specific aspects of the
problem, since in general the corresponding nonlinear terms in the equations vanish), or
we impose very restrictive conditions on the initial data (see Section 3). This is not the case
when we take the word solution in the weak sense given by Leray.

DEFINITION 2 (Weak). Aweak solutionv(t, x) of the Navier–Stokes equations in the
sense of Leray and Hopf is supposed to have the following properties:

v(t, x) ∈ L∞([0, T );PL2)∩ L2([0, T );PH 1) (19)
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and ∫ T

0

(−〈v, ∂t ϕ〉 + 〈∇v,∇ϕ〉 + 〈(v · ∇)v,ϕ
〉)

ds = 〈v0, ϕ(0)
〉+ ∫ T

0
〈φ,ϕ〉ds

(20)

for anyϕ ∈ D([0, T );PD). The symbol〈·, ·〉 denotes theL2-inner product, whereasPX

denotes the subspace ofX (hereX = L2, H 1 orD) of solenoidal functions,1 characterized
by the divergence-free condition∇ · v = 0. Finally, such a weak solution is supposed to
verify the following energy inequality

1

2

∥∥v(t)
∥∥2

2 +
∫ t

0

∥∥∇v(s)
∥∥2

2 ds � 1

2

∥∥v(0)
∥∥2

2 +
∫ t

0
〈φ,v〉ds, t > 0. (21)

Sometimes this inequality is satisfied not only on the interval(0, t) but on all intervals
(t0, t1) ⊂ (0, T ) except possibly for a set of measure zero. Such a solution is calledturbu-
lent in Leray’s papers.

Finally, after the papers of Kato and his collaborators, we got used to callingmild solu-
tionsa third category of solutions, whose existence is obtained by a fixed point algorithm
applied to the integral equation (11). In other words, the Navier–Stokes equations are stud-
ied by means of semigroup techniques as in the pioneering papers of Yosida [238]. More
precisely, mild solutions are defined in the following way.

DEFINITION 3 (Mild). A mild solutionv(t, x) of the Navier–Stokes equations satisfies the
integral equation (11) and is such that

v(t, x) ∈ C
([0, T );PX

)
, (22)

whereX is a Banach space of distributions on which the heat semigroup{exp(t�); t � 0}
is strongly continuous and the integrals in (11) are well defined in the sense of Bochner.

Historically, the introduction of the term “mild” in connection with the integral formu-
lation for the study of an arbitrary evolution equation goes back to Browder [30]. We do
not expect to use the energy inequality, but we hope to ensure in this way the uniqueness
of the solution, in other words that the solution is strong. This is in contrast with Leray’s
construction ofweak solutions, relying on compactness arguments anda priori energy es-
timates. Moreover, the fixed point algorithm is stable and constructive. Thus the problem
of defining mild solutions is closely akin to the question of knowing whether the Cauchy
problem for Navier–Stokes equations is well posed in the sense of Hadamard. This ques-
tion will be discussed in Section 7 in connection with the theory of stability and Lyapunov
functions.

Let us recall that for a functionu(t, ·) that takes values in a Banach spaceE, the inte-
gral

∫ T

0 u(t, ·)dt exists either because
∫ T

0 ‖u(t, ·)‖E dt < ∞ (in this case we say that the

1In the literature this space is usually denoted byXσ .



Harmonic analysis tools for solving the incompressible Navier–Stokes equations 171

integral is defined in the sense of Bochner) or because
∫ T

0 |〈u(t, ·), y〉|dt converges for any
vectory of the dual (or pre-dual)E′ of E (the integral is said to be weakly convergent). The
weak convergence is ensured by the oscillatory behavior ofu(t, ·) in the Banach spaceE.

Now, the oscillatory property of the bilinear term arising from the Navier–Stokes equa-
tions is systematically taken into account in all papers that are based on the energy
inequality, in particular〈B(v, v), v〉 = 0 as long as∇ · v = 0. In the following pages, we
will nevertake advantage of this remarkable property, for we will only consider functional
spaces where it isnot possible to write〈B(v, v), v〉. In fact,B(v, v) will neverbelong to
a space that is a dual of the one to whichv belongs. This is the reason why our works
([46,47] excepted) arenotbased on the innermost structure of the Navier–Stokes equations
and can be easily extended to other nonlinear partial differential equations [14–17,52–54,
89,90,113,156,183,184,190–192,196–202,222,223].

More explicitly, in the literature concerning the existence and uniqueness of mild so-
lutions for the Navier–Stokes equations as inaugurated by Fujita and Kato’s celebrated
papers [87,117], the oscillatory behavior ofB(v,u) is lost from the very beginning be-
cause, by definition, mild solutions requirestrongestimates in thestrongtopology, so that
B(v,u) can be replaced by|B(v,u)| without affecting the corresponding existence and
uniqueness results.

On the other hand, as far as theweaksolutions are concerned, introduced in the pioneer-
ing papers by Leray [148–150], the oscillatory behavior ofB(v,u) is frequently analyzed
by means of the well-known identity

〈∇ · (u ⊗ v), v
〉= 0, (23)

where∇ · u = 0. In that case the problem is different, for the above identity does not allow
a great flexibility in the choice of the functional setting, that is forced to be defined in terms
of an energy norm (e.g.,L2,H 1, . . . ).

1.3. Navier meets Fourier

The title of this section is borrowed from a paper by Federbush “Navier and Stokes meet
the wavelets” [78,79] that will be dealt with in Section 2.4.

The Navier–Stokes equations did not yet exist when Fourier gave the explicit solution
of the heat equation

∂u

∂t
− �u = f,

u(0) = u0.

(24)

This equation, governing the evolution of temperatureu(x, t), in the presence of an
exterior source of heatf (x, t), at a pointx and timet of a body assumed here to fill the
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whole spaceR3, becomes, when we consider its partial Fourier transform with respect tox,
an ordinary differential equation int , whose solution is given by

u(t, x) = S(t)u0 +
∫ t

0
S(t − s)f (s)ds, (25)

S(t) being the convolution operator defined as in (12) by the heat semigroup

S(t) = exp(t�) =
(

1

4πt

)3/2

exp

(
−|x|2

4t

)
. (26)

The Navier–Stokes equations, that describe the motion of a viscous fluid, were introduced
by Navier in 1822 [178], the same year that, by a curious coincidence, Fourier published
the celebrated treatise “Théorie analytique de la chaleur” [86], in which he developed in a
systematic way the ideas contained in a paper of 1807.

But this is not only a mere coincidence. In fact Navier, engineer of theEcole Nationale
des Ponts et Chaussées, was also a very close friend of many mathematicians, in particular
Fourier. Fourier had a strong influence on Navier’s life and career, both as a friend and
as a teacher. In turn, Navier was a noticeableproponent of the important mathematical
techniques developed by Fourier.2

In this section we want to show how to take advantage of the Fourier transform in order
to study the Navier–Stokes equations.

We have already remarked that, following Fourier’s method to solve the Navier–Stokes
equations for a viscous incompressible fluid, we obtain the integral equation (11), very
similar to (25), that led to the concept of a mild equation and a mild solution.

If we want to make use of the Fourier transform again, the second idea that comes to
mind is to rewrite (11) componentwise (j = 1,2,3) in Fourier variables

v̂j (ξ) = exp
(−t|ξ |2)v̂0j

−
∫ t

0
exp
(−(t − s)|ξ |2) 3∑

l,k=1

(
δjk − ξj ξk

|ξ |2
)

(iξl)v̂l(ξ) ∗ v̂k(ξ)

+
∫ t

0
exp
(−(t − s)|ξ |2) 3∑

l,k=1

(
δjk − ξj ξk

|ξ |2
)

(iξl)V̂lk(ξ)ds.

We use the notations introduced by Miyakawa in [173] and denote byF(t, x) the tensor
kernel associated with the operator exp(t�)P∇·, say

F̂l,k,j (t, ξ) = exp
(−t|ξ |2)(δjk − ξj ξk

|ξ |2
)

iξl . (27)

2This was not the case for most other engineers of his period. Navier’s interests in more mathematical aspects
of physics, mechanics and engineers sciences were so deep that, when the suspension bridge across the Seine
he had designed collapsed, sarcastic articles appeared in the press against Navier, who was referred to as “that
eminent man of science whose calculations fail in Paris” (see [38]).
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It is easy to see that the kernelF(t, x) = {Fl,k,j (t, x)} defined in this way verifies∣∣F(t, x)
∣∣� |x|−αt−β/2, α � 0, β � 0, α + β = 4, (28)

and ∥∥F(t, x)
∥∥

p
� t−(4−3/p)/2, 1 � p � ∞. (29)

In the following pages we will not take advantage of these general estimates. In fact, we
will never use the full structure of the operator exp(t�)P∇· and our analysis will apply to
a more general class of evolution equations.

Let us be more explicit. Our existence and uniqueness theorems for the mild Navier–
Stokes equations will be obtained by using the Banach fixed point theorem. The continuity
of the bilinear termB as well as the continuity of the linear termL defined in (13) and (14)
will be the main ingredients of the proofs. The functional spaces where the initial data will
be considered are such that the Riesz transforms operate continuously. The conclusion is
easy: we will get rid of the Riesz transforms from the very beginning and limit ourselves
to the study of a simplified version of the operator exp(t�)P∇· giving rise to simplified
versions of the operatorsB andL.

We denote with the lettersBs andLs these operators defined by

Bs(f,g)(t) =: −
∫ t

0

[
S(t − s)Λ̇

]
(fg)(s)ds (30)

and

Ls(h)(t) =:
∫ t

0

[
S(t − s)Λ̇

]
h(s)ds, (31)

wheref = f (t, x), g = g(t, x) andh(t, x) are genericscalarfields and

Λ̇ =: √−� (32)

denotes the well-known Calderón’s homogeneouspseudo-differential operator whose sym-
bol in Fourier transform is|ξ |.

In order to obtain such simplifiedscalar versions of the operatorsB andL, we have
not taken into account all Riesz transforms contained in the fullvectorial operators. For
example, as far as the continuity of the bilinear operator is concerned in a certain function
space, we can pass from the full vectorial operatorB,

j ∈ {1,2,3},

B(u, v)j = −i
3∑

m=1

RmBs(um, vj ) + i
3∑

k=1

3∑
l=1

RjRkRlBs(ul, vk), (33)
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to its scalar simplified versionBs just by using the continuity of the Riesz transforms in
this space.

With this simplification in mind, and by recalling the elementary properties of the
Fourier transform, we finally get an even simpler expression for the bilinear term (that
by abuse of notation will be always denoted by the letterB):

B(f,g) = −
∫ t

0
(t − s)−2Θ

( ·√
t − s

)
∗ (fg)(s)ds, (34)

wheref = f (t, x) andg = g(t, x) are two scalar fields andΘ = Θ(x) is a function ofx
whose Fourier transform is given by

Θ̂(ξ) = |ξ |e−|ξ |2. (35)

As such,Θ is analytic, behaves like O(|x|−4) at infinity (this can also be deduced by (28)
for α = 4 andβ = 0) and its integral is zero.

In the same way, the linear operatorL involving the external force will be treated in the
simplified scalar form

L(h) =
∫ t

0
(t − s)−2Θ

( ·√
t − s

)
∗ h(s)ds. (36)

In particular, we notice that

B(f,g) = −L(fg) (37)

which allows to treat both the bilinear and the linear terms in exactly the same way. This is
why, for the sake of simplicity, in the following pages we will only consider the case when
there is no external force and refer the reader to [39,42,40,47] for the general case.

2. Functional setting of the equations

2.1. The Littlewood–Paley decomposition

Let us start with the Littlewood–Paley decomposition inR3. To this end, we take an arbi-
trary functionϕ in the Schwartz classS and whose Fourier transform̂ϕ is such that

0� ϕ̂(ξ) � 1, ϕ̂(ξ) = 1 if |ξ | � 3

4
, ϕ̂(ξ) = 0 if |ξ | � 3

2
, (38)

and let

ψ(x) = 8ϕ(2x) − ϕ(x), (39)

ϕj = 23jϕ
(
2jx
)
, j ∈ Z, (40)

ψj(x) = 23jψ
(
2j x
)
, j ∈ Z. (41)
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We denote bySj and∆j , respectively, the convolution operators withϕj andψj . Finally,
the set{Sj ,∆j }j∈Z is the Littlewood–Paley decomposition, so that

I = S0 +
∑
j�0

∆j . (42)

To be more precise, we should say “a decomposition”, because there are different pos-
sible (equivalent) choices for the functionϕ. On the other hand, for an arbitrary tempered
distributionf , the last identity gives

f = lim
j→∞S0f +

∑
j�0

∆jf. (43)

The interest in decomposing a tempered distribution into a sum of dyadic blocks∆jf ,
whose support in Fourier space is localized in a corona, comes from the nice behavior of
these blocks with respect to differential operations. This fact is illustrated by the following
celebrated Bernstein’s lemma inR3, whose proof can be found in [162].

LEMMA 1. Let 1� p � q � ∞ andk ∈ N, then one has

sup
|α|=k

∥∥∂αf
∥∥

p
� Rk‖f ‖p (44)

and

‖f ‖q � R3(1/p−1/q)‖f ‖p (45)

wheneverf is a tempered distribution inS ′ whose Fourier transformf̂ (ξ) is supported in
the corona|ξ | � R.

In the case of a function whose support is a ball (as, for instance, forSjf ) the lemma
reads as follows:

LEMMA 2. Let 1� p � q � ∞ andk ∈ N, then one has

sup
|α|=k

∥∥∂αf
∥∥

p
� Rk‖f ‖p (46)

and

‖f ‖q � R3(1/p−1/q)‖f ‖p (47)

wheneverf is a tempered distribution inS ′ whose Fourier transformf̂ (ξ) is supported in
the ball|ξ | � R.
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Let us go back to the decomposition of theunity (42) and (43). It was introduced in
the early 1930s by Littlewood and Paley to estimate theLp norm of trigonometric Fourier
series when 1< p < ∞. If we omit the trivial casep = 2, it is not possible to ensure the
belonging of a generic Fourier series to the Lebesgue spaceLp by simply using its Fourier
coefficients, but this becomes true if we consider instead its dyadic blocks. In the case of a
functionf (not necessarily periodic), this property is given by the following equivalence

if 1 < p < ∞ then‖f ‖p � ‖S0f ‖p +
∥∥∥∥∥
( ∞∑

j=0

∣∣∆jf (·)∣∣2)1/2∥∥∥∥∥
p

. (48)

It is even easier to prove that the classical Sobolev spacesHs = Hs
2 , s ∈ R, can be

characterized by the following equivalent norms

‖f ‖Hs � ‖S0f ‖2 +
( ∞∑

j=0

22js‖∆jf ‖2
2

)1/2

. (49)

As far as the more general norms‖f ‖Hs
p

= ‖(I − �)s/2f ‖p , s ∈ R, 1 < p < ∞, corre-
sponding to the Sobolev–Bessel spacesHs

p (that is, whens is an integer, reduce to the
well-known Sobolev spacesWs,p whose norm are given by‖f ‖Ws

p
=∑|α|�s ‖∂αf ‖p)

we will see in the next section how (49) has to be modified.
Another easier case we wish to present here is provided by the Hölder–Zygmund

spacesCs , s ∈ R, that can be characterized by the following norms

‖f ‖Cs � ‖S0f ‖∞ + sup
j�0

2js‖∆jf ‖∞. (50)

We will not prove this property here and we refer the reader to [82]. Let us just remind
the reader of the usual definition of these spaces, in order to better appreciate the simplicity
of (50). If 0< s < 1 we denote the Hölder space by

‖f ‖Cs = ‖f ‖∞ + sup
x �=y

|f (x) − f (y)|
|x − y|s . (51)

As it is well known, this definition has to be modified in the cases = 1 in the following
way

‖f ‖C1 = ‖f ‖∞ + sup
x �=y

|f (x + y) + f (x − y) − 2f (x)|
|x − y| (52)

and defines the Zygmund classC1. It is now easy to define, for anys > 0, the quantities

‖f ‖Cs = ‖f ‖∞ +
n∑

i=1

‖∂if ‖Cs−1. (53)
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In the cases < 0 we define the Hölder–Zygmund spaces by the following rule:

Cs−1 =
{

f =
n∑

i=1

∂igi, gi ∈ Cs

}
,

‖f ‖Cs−1 = inf sup
i=1,2,...,n

‖gi‖Cs ,

(54)

the infimum being taken over the set ofgi such thatf =∑n
i=1 ∂igi .

Before defining the Besov spaces that willplay a key role in our study of the Navier–
Stokes equations, let us recall the homogeneous decomposition of the unity, analogous
to (42), but containing also all the low frequencies (j < 0), say

I =
∑
j∈Z

∆j . (55)

If we apply this identity to an arbitrary tempered distributionf , we may be tempted to
write

f =
∑
j∈Z

∆jf, (56)

but, at variance with (43), this identity has no meaning inS ′ for several reasons. First of
all, the sum in (56) does not necessarily converge inS ′ as we can see if we consider a test
functiong ∈ S whose Fourier transform is equal to 1 near the origin, because in this case
the quantity〈∆jf,g〉 is, for all j � 0, a positive constant not depending onj . And, even
when the sum is convergent, the convergence has to be understood modulo polynomials,
because, for these particular functionsP , we have∆jP = 0 for all j ∈ Z.

A way to restore the convergence is to “sufficiently” derive the formal series
∑

j∈Z
as it

stated in the following lemma (see [21,22,183] for a simple proof ).

LEMMA 3. For any tempered distributionf , there exists an integerd such that, for anyα,
|α| � d , the series

∑
j<0 ∂α(∆jf ) converges inS ′.

The following corollary, whose proof follows from the previous lemma, gives the correct
meaning to the convergence (56), that is modulo polynomials.

COROLLARY 1. For any integerN , there exists a polynomialPN of degree< d such that
the quantity

∑∞
j=−N ∆jf − PN converges inS ′ whenN → ∞.

In such a way, the series∆jf is always well defined; furthermore, it is not difficult to
prove that the differencef −∑j∈Z

∆jf has its spectrum reduced to zero; in other words,
it is a polynomial. In this way, the convergence in (56), that fails to be valid inS ′, is ensured
in the quotient spaceS ′/P .
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2.2. The Besov spaces

The Littlewood–Paley decomposition is very useful because we can define (indepen-
dently of the choice of the initial functionϕ) the following (inhomogeneous) Besov
spaces [82,185].

DEFINITION 4. Let 0< p,q � ∞ ands ∈ R. Then a tempered distributionf belongs to
the (inhomogeneous) Besov spaceB

s,p
q if and only if

‖S0f ‖q +
(∑

j>0

(
2sj‖∆jf ‖q

)p)1/p

< ∞. (57)

For the sake of completeness, we also define the (inhomogeneous) Triebel–Lizorkin
spaces, even if we will not make a great use of them in the study of the Navier–Stokes
equations.

DEFINITION 5. Let 0< p � ∞, 0< q < ∞ ands ∈ R. Then a tempered distributionf
belongs to the (inhomogeneous) Triebel–Lizorkin spaceF

s,p
q if and only if

‖S0f ‖q +
∥∥∥∥(∑

j>0

(
2sj |∆jf |)p)1/p∥∥∥∥

q

< ∞. (58)

It is easy to see that the above quantities define a norm ifp,q � 1 and a quasi-norm in
general, with the usual convention thatp = ∞ in both cases corresponds to the usualL∞
norm. On the other hand, we have not included the caseq = ∞ in the second definition
because theL∞ norm has to be replaced here by a more complicated Carleson measure
(see [82]).

As we have already remarked before for some particular values ofs,p, q , see (48)–(50),
the Besov and Triebel–Lizorkin spaces generalize the usual Lebesgue ones, for instance,

Lq = F 0,2
q , 1< q < ∞, (59)

and more generally the Sobolev–Bessel spaces,

Hs
q = Fs,2

q , s ∈ R,1< q < ∞, (60)

and the Hölder ones,

Cs = Bs,∞∞ . (61)
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Another interesting case is given by the spaceF
0,2
q with 0 < q � 1 that corresponds to a

local version of the Hardy space, whereasF
0,2∞ gives the local versionbmo of the John and

Nirenberg spaceBMO of Bounded Mean Oscillation functions3 whose norm is defined by

‖f ‖BMO = sup
B

(
1

µ(B)

∫
B

|f − fB |2 dx

)1/2

, (62)

whereB stands for the set of Euclidean balls,µ(B) the volume ofB andfB denotes the
average of the functionf overB, sayfB = 1

|B|
∫
B

f (x)dx. It is clear that this quantity is

in general a seminorm, unless we argue modulo constant functions (whoseBMO-norm is
zero). Moreover, it is evident thatL∞ ↪→ BMO but these spaces are different, because the
functionsf (x) = ln |p(x)|, for all polynomialsp(x), belong toBMO but not toL∞.

A space that will be useful in the following pages is provided by the set of functions
which are derivatives of functions inBMO. More precisely, we are talking about the space
introduced by Koch and Tataru in [123], that is denoted byBMO−1 (or by ∇BMO) and
is defined as the space of tempered distributionsf such that there exists a vector function
g = (g1, g2, g3) belonging toBMO such that

f = ∇ · g. (63)

The norm inBMO−1 is defined by

‖f ‖BMO−1 = inf
g∈BMO

3∑
j=1

‖gj‖BMO. (64)

At this point, in order to provide the reader with the dyadic decomposition of the clas-
sical HardyHq , BMO andBMO−1 spaces, we have to recall that their norms, at variance
with the local ones, are “homogeneous”.

Let us be more explicit and consider some familiar examples. The Lebesgue space
Lp is “homogeneous”, because its norm satisfies, with respect to the dilatation group,
the following invariance‖f (λ·)‖p = λ−3/p‖f ‖p for all λ > 0. On the other hand, the
Sobolev spaceH 1 normed with‖f ‖H1 = ‖f ‖2 + ‖∇f ‖2 does not verify a property of
this type because the two terms composing the norm have different homogeneity (resp.
λ−3/2 andλ1−3/2). A possible way to restore the scaling invariance would be to forget the
L2 part and define the “homogeneous” Sobolev spaceḢ 1 simply by‖f ‖Ḣ1 = ‖∇f ‖2. Of
course the attentive reader, armed with the discussion that follows (56), will protest that this
quantity is not a norm, unless we work inS ′ modulo polynomials (in the case oḟH 1, mod-
ulo constants would be sufficient). A very simple condition that prevents constant functions
to belong toḢ 1 is given by [166]:∫

|x|�R

∣∣f (x)
∣∣dx = o

(
R3), R → +∞. (65)

3For a different interpretation of the acronym. . . see [185], page 175!
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A stronger, but more natural condition is provided by the celebrated Sobolev embedding
in R3

‖f ‖6 � ‖∇f ‖2, (66)

thus suggesting the following definition: A functionf belongs toḢ 1 if and only if ∇f

belongs toL2 and f belongs toL6, the norm off in Ḣ 1 being ‖∇f ‖2. Indeed, this
definition is equivalent to defininġH 1 as the closure of the test functions spaceC∞

0 for
the norm‖f ‖Ḣ1 = ‖∇f ‖2. In the same way, we define the spaceḢ s

p whens < 3/p as the
closure of the space

S0 = {f ∈ S,0 /∈ Suppf̂
}

(67)

for the norm

‖f ‖Ḣ s
p

= ∥∥Λ̇sf
∥∥

p
, (68)

where, as usual,̇Λ = √−� denotes the homogeneous Calderón pseudo-differential oper-
ator (see Section 1.3). Finally, when 3/p + d � s < 3/p + d + 1 andd is an integer,Ḣ s

p is
a space of distributions modulo polynomials of degree� d .

We are now ready to define the homogeneous version of the Besov and Triebel–Lizorkin
spaces [21,22,82,185].

If m ∈ Z, we denote byPm the set of polynomials of degree� m with the convention
thatPm = ∅ if m < 0. If q = 1 ands − 3/p ∈ Z, we putm = s − 3/p − 1; if not, we put
m = [s − 3/p], the brackets denoting the integer part function.

DEFINITION 6. Let 0< p,q � ∞ ands ∈ R. Then a tempered distributionf belongs to
the (homogeneous) Besov spaceḂ

s,p
q if and only if

(∑
j∈Z

(
2sj‖∆jf ‖q

)p)1/p

< ∞ and f =
∞∑

−∞
∆jf in S ′/Pm. (69)

DEFINITION 7. Let 0< p � ∞, 0< q < ∞ ands ∈ R. Then a tempered distributionf
belongs to the (homogeneous) Triebel–Lizorkin spaceḞ

s,p
q if and only if

∥∥∥∥(∑
j∈Z

(
2sj |∆jf |)p)1/p∥∥∥∥

q

< ∞ and f =
∞∑

−∞
∆jf in S ′/Pm, (70)

with an analogous modification as in the inhomogeneous case whenq = ∞.

As expected, we have the following identifications:

Lq = Ḟ 0,2
q , 1< q < ∞, (71)
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and, more generally,

Ḣ s
q = Ḟ s,2

q , s ∈ R,1 < q < ∞, (72)

Ċs = Ḃs,∞∞ , s ∈ R, (73)

Ḟ 0,2
q =Hq, 0 < q � 1, (74)

Ḟ 0,2∞ = BMO, (75)

and
Ḟ−1,2∞ = BMO−1. (76)

Moreover, we have the following continuous embedding (see [34]):

3 � q1 � q2 < ∞,

L3 ↪→ Ḃ
−1+3/q1,∞
q1 ↪→ Ḃ

−1+3/q2,∞
q2 ↪→ Ḟ−1,2∞ ↪→ Ḃ−1,∞∞ .

(77)

We will come back on the “maximal” spacėB−1,∞∞ in Proposition 7.
The next four propositions are of paramount importance because they give definitions

for the Besov and Triebel–Lizorkin norms in terms of the heat semigroupS(t) (that ap-
pears in (12)) and in terms of the functionΘ (that appears in (34) and (36)). The first two
equivalences given hereafter, are very natural. The idea is that the convolution operators∆j

can be interpreted as a discrete subset (j ∈ Z) of the continuous set (t > 0) of convolution
operatorsΘt where

Θt = 1

t3Θ

( ·
t

)
(78)

and, as in (35),Θ is defined by its Fourier transform̂Θ(ξ) = |ξ |e−|ξ |2. If the functionΘ

were smooth and compactly supported on the Fourier side, this would indeed be the usual
characterization for Besov and Triebel–Lizorkin spaces without any restriction on the third
(regularity) indexs that appears in Definitions 1 and 2. This would also be the case if the
functionΘ had all its moments equal to zero [185]. In the case we are dealing with, we only
know thatΘ has its first moment (the integral) equal to zero. This is why we have to require
s < 1 (see [185]). The reader can consult [185] for the detailed proofs and [82,225,226] for
a more general characterization.

PROPOSITION1. Let 1 � p,q � ∞ ands < 1, then the quantities(∑
j∈Z

(
2sj‖∆jf ‖q

)p)1/p

(79)

and (∫ ∞

0

(
t−s‖Θtf ‖q

)p dt

t

)1/p

(80)
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are equivalent and will be referred to in the sequel by‖f ‖Ḃ
s,p
q

.

PROPOSITION2. Let 1� p � ∞, 1� q < ∞ ands < 1, then the quantities∥∥∥∥(∑
j∈Z

(
2sj |∆jf |)p)1/p∥∥∥∥

q

(81)

and ∥∥∥∥(∫ ∞

0

(
t−s |Θtf |)p dt

t

)1/p∥∥∥∥
q

(82)

are equivalent and will be referred to in the sequel by‖f ‖Ḟ
s,p
q

.

The next two equivalences are even more useful because they allow us to pass from∆j

to Sj (and from the discrete setSj to the continuousS(t) one). Here a restriction in the
range of exponents also appears and we will be forced to assume thats < 0. More precisely,
the reason why the equivalences under consideration are not true ifs � 0 is essentially the
following: even if we can easily estimate any quantity involving∆j from above with one
only involvingSj , because of the identity

∆j = Sj+1 − Sj , (83)

passing from∆j to Sj , via the relation

Sj+1 =
∑
k�j

∆k, (84)

it is not possible whens � 0 (see [185]). In the context of the Navier–Stokes equations, an
explicit counter-example fors = 0 was given in [34] for the Besov spaces. A second one
for the Triebel–Lizorkin spaces (always withs = 0) will be given in the following pages.

But let us state the equivalences we are talking about (for a proof see [225], p. 192).

PROPOSITION3. Let 1� p,q � ∞ ands < 0, then the quantities(∑
j∈Z

(
2sj‖∆jf ‖q

)p)1/p

, (85)

(∑
j∈Z

(
2sj‖Sj f ‖q

)p)1/p

, (86)

(∫ ∞

0

(
t−s/2

∥∥S(t)f
∥∥

q

)p dt

t

)1/p

(87)
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and (∫ ∞

0

(
t−s‖Θtf ‖q

)p dt

t

)1/p

(88)

are equivalent and will be referred to in the sequel by‖f ‖Ḃ
s,p
q

.

PROPOSITION4. Let 1 � p � ∞, 1� q < ∞ ands < 0, then the quantities∥∥∥∥(∑
j∈Z

(
2sj |∆jf |)p)1/p∥∥∥∥

q

, (89)

∥∥∥∥(∑
j∈Z

(
2sj |Sjf |)p)1/p∥∥∥∥

q

, (90)

∥∥∥∥(∫ ∞

0

(
t−s/2

∣∣S(t)f
∣∣)p dt

t

)1/p∥∥∥∥
q

(91)

and ∥∥∥∥(∫ ∞

0

(
t−s |Θtf |)p dt

t

)1/p∥∥∥∥
q

(92)

are equivalent and will be referred to in the sequel by‖f ‖Ḟ
s,p
q

.

The next propositions will be also useful in the following pages. Of course the embed-
dings are also valid for inhomogeneous spaces.

PROPOSITION5.

If s1 > s2 ands1 − 3

q1
= s2 − 3

q2
, thenḂ

s1,p1
q1 ↪→ Ḃ

s2,p2
q2 andḞ

s1,p1
q1 ↪→ Ḟ

s2,p2
q2 .

(93)

If p1 < p2, thenḂ
s1,p1
q ↪→ Ḃ

s2,p2
q andḞ

s1,p1
q ↪→ Ḟ

s2,p2
q . (94)

For anyp,q ands, Ḃ
s,min(p,q)
p ↪→ Ḟ

s,p
q ↪→ Ḟ

s,max(p,q)
q . (95)

2.3. The paraproduct rule

In order to study how the product acts on Besov spaces, we need to recall Bony’s paraprod-
uct algorithm [20], one of the most celebrated tools of paradifferential calculus. The Greek
prefix “para” is added here in front ofproductanddifferential to underline that the new
operations “go beyond” the usual ones. In particular, the new calculus enables us to define
a new product between distributions which turns out to be continuous in many functional
spaces where the usual product does not even make sense.
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More precisely, let us consider two tempered distributionsf andg and write, in terms
of a Littlewood–Paleydecomposition,

f =
∑
j

∆jf, (96)

g =
∑
j

∆jg (97)

so that, formally,

fg =
∑
n

[Sn+1f Sn+1g − Snf Sng] + S0f S0g. (98)

Now, after some simplifications, we get

fg =
∑
n

[∆nf Sng + ∆ngSnf + ∆nf ∆ng]

=
∑
n

∆nf Sn−2g +
∑
n

∆ngSn−2f +
∑

|n−n′ |�2

∆n′f ∆ng. (99)

In other words, the product of two tempered distributions is decomposed into two para-
products, respectively,

π(f,g) =
∑
n

∆nf Sn−2g (100)

and

π(g,f ) =
∑
n

∆ngSn−2f, (101)

plus a remainder. Finally, if we want to analyze the productfg by means of the frequency
filter ∆j we deduce from (101), modulo some nondiagonal terms that we are neglecting
for simplicity,

∆j(fg) = ∆jf Sj−2g + ∆jgSj−2f + ∆j

(∑
k�j

∆kf ∆kg

)
. (102)

Usually, the first two contributions are easier to treat than the third remainder term.

2.4. The wavelet decomposition

The Littlewood–Paley decomposition allows us to describe an arbitrary tempered distrib-
ution into the sum of regular functions that are well localized in the frequency variable.
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The wavelet decomposition allows us to obtain an even better localization for these func-
tions, say in both space and frequency. Of course, the ideal case of functions that are
compactly supported in space as well as in frequency is excluded by Heisenberg’s prin-
ciple. Wavelets were discovered at the beginning of the 1980s and the best reference is
Meyer’s work [162,163].

The idea of using a wavelet decomposition to study turbulence questions was advocated
from the very beginning, at about the same time when wavelets tools were available. In fact,
due to the strong impact that wavelets had in several important scientific and technological
discoveries, many people started dreaming that wavelets could provide the “golden rule” to
attack the Navier–Stokes equations, from both mathematical and numerical points of view
(see for instance the paper of Farge [77] and the references therein).

We do not discuss here the relevance of wavelets in numerical simulations of the Navier–
Stokes equations and refer the reader to Meyer’s conclusion in [166]. From the point of
view of nonlinear partial differential equations, the situation is alittle disappointing. The
first attempt to approach the Navier–Stokes equations, by expanding the unknown velocity
field v(t, x) into a wavelet basis in space variable, came from Federbush, who wrote an
intriguing paper in 1993 [78]. The techniques and insights employed arose from the theory
of phase cell analysis used in constructive quantum field theory, and were the starting point
and the first source of inspiration of our work [34].

The disappointing note is that, as we will see in the following sections, Federbush’s
program can be realized as well by using theless sophisticated Littlewood–Paley decom-
position. On the other hand, the good news is that the systematic use of harmonic analysis
tools (Littlewood–Paley and wavelets decomposition and their natural companions, Besov
spaces and Bony’s paraproducts techniques) paved the way for important discoveries for
Navier–Stokes: the existence of a global solution for highly oscillating data, the uniqueness
of this solution and its asymptotic behavior, via the existence of self-similar solutions.

As we have already announced in the Introduction, our story is full of surprises and bad
news follows here at once. In fact, each proof of the previous results originally discovered
by means of ‘Fourier analysis methods’, more precisely, by using ‘Besov spaces’, was
followed shortly after its publication by a ‘real variable methods’ proof.

We will come back to these questions – existence, uniqueness, self-similar solutions –
and treat them in detail in three separate sections (resp. Sections 4–6). Before doing this
and in order to clarify the previous discussion,let us briefly recall here, for the convenience
of the reader, some definitions taken from the wavelet world. Roughly speaking, a wavelet
decomposition is a decomposition of the type

f =
∑
λ

〈f,ψλ〉ψλ, (103)

whereψλ is “essentially” localized in frequency in a dyadic annulus 2j and “essentially”
localized in space in a dyadic cube 2−j . More precisely, following Meyer [162], we have
the following definition:

DEFINITION 8. A wavelet decomposition of regularitym > 0 is a set of 23 − 1 = 7 func-
tionsψε , ε ∈ {0,1}3\{0,0,0} verifying the following properties:
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1. Regularity: ψε belongs toCm.
2. Localization:

∀α, |α| � m, ∀N ∈ N,∃C:
∣∣∂αψε

∣∣(x) � C
(
1+ |x|)−N

. (104)

3. Oscillation:

∀α, |α| � m:
∫

xαψε(x)dx = 0. (105)

4. Orthogonality: The set{
23j/2ψε

(
2j x − k

)/
j ∈ Z3, ε ∈ {0,1}3\{0,0,0}} (106)

is an orthogonal basis ofL2.

If we denoteψj,k(x) = 23j/2ψ(2j x − k) (where, for the sake of simplicity, the parame-
ter ε is neglected), then we obtain the following “homogeneous” decomposition

f =
∑
j∈Z

∑
k∈Z3

〈f,ψj,k〉ψj,k =
∑
j,k

cj,kψj,k (107)

that, as in the case of the homogeneous Littlewood–Paley decomposition, has to be under-
stood inS ′ modulo polynomials.

Formally, a Littlewood–Paley decomposition∆j gives a wavelet decompositionψj,k by
letting

cj,k � ∆jf
(
2−j k

)
(108)

and, vice versa, from a wavelet decomposition we can recover a Littlewood–Paley one just
by taking

∆jf �
∑
k∈Z3

cj,kψj,k . (109)

Finally, the wavelets coefficientscj,k of a functionf allow us to obtain an equivalent
definition of the Besov and Triebel–Lizorkin spaces. For example, we have the following
proposition [162]:

PROPOSITION 6. If ψ is a wavelet of regularitym > 0, then, for any |s| < m and any
1� p,q � ∞, we have the equivalence of norms

‖f ‖Ḃ
s,p
q

�
(∑

j∈Z

2jp(s+3(1/2−1/q))

(∑
k∈Z3

|cj,k|q
)p/q)1/p

. (110)
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REMARK. In the study of the Navier–Stokes equations and otherincompressiblefluid
equations, one would expect that the wavelets functionsψε in Definition 8 have an
additional property:

5. Divergence-free: Divergence-free basis of wavelets were first discovered by Bat-
tle and Federbush [6,7] and their construction was improved later by Lemarié
[139,140,145]. A simple presentation of these basis is contained in the paper by
Meyer [166].

2.5. Other useful function spaces

Before we enter the heart of the paper, devoted to existence and uniqueness theorems for
the Navier–Stokes equations, we wish to end this section by presenting other functional
spaces, that will be useful in the following pages.

2.5.1. Morrey–Campanato spaces.For 1� q � p � ∞, the inhomogeneous Morrey–
Campanato spaceMp

q is defined as the space of functionsf which are locally inLq and
such that

sup
x∈R3,0<r�1

R3/p

(
R−3

∫
|x−y|�r

∣∣f (x)
∣∣q dy

)1/q

< ∞, (111)

where the left-hand side of this inequality is the norm off in M
p
q . The homogeneous

Morrey–Campanato spacėMp
q is defined in the same way, by taking the supremum over

all r ∈ (0,∞) instead ofr ∈ (0,1].

2.5.2. Lorentz spaces. Let 1 � p,q � ∞, then a functionf belongs to the Lorentz
spaceL(p,q) if and only if ‘the quantity’

‖f ‖L(p,q) =
(

q

p

∫ ∞

0

[
t1/pf ∗(t)

]q dt

t

)1/q

< ∞, (112)

of course, ifq = ∞ this means

‖f ‖L(p,∞) = sup
t>0

t1/pf ∗(t) < ∞, (113)

wheref ∗ is the decreasing rearrangement off :

f ∗(t) = inf
{
s � 0; ∣∣{|f | > s

}∣∣� t
}
, t � 0. (114)

We know [215] that forp > 1, a norm onL(p,q) equivalent to ‘the quantity’‖f ‖L(p,q)

exists such thatL(p,q) becomes a Banach space. Ifp = q , the spaceL(p,p) is nothing
else than the Lebesgue spaceLp . Moreover, generalization versions of Hölder and Young
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inequalities hold for the Morrey–Campanato spaces [111]. Finally, for these spaces, the
theory of real interpolation gives the equivalence (see [10])(

Lp0,Lp1
)
(θ,q)

= L(p,q), (115)

where 1< p0 < p < p1 < ∞ and 0< θ < 1 satisfy 1/p = (1 − θ)/p0 + θ/p1 and 1�
q � ∞.

2.5.3. Le Jan–Sznitman spaces.Recently, Le Jan and Sznitman [137,138] considered the
space of tempered distributionsf whose Fourier transform verifies

sup
R3

|ξ |2∣∣f̂ (ξ)
∣∣< ∞. (116)

Now, if in the previous expression we consider
∫
ξ∈R3 instead of supξ∈R3, we obtain the

(semi)-norm of a homogeneous Sobolev space.This is not the case: the functions whose
Fourier transform is bounded define the pseudo-measure spacePM of Kahane. In other
words, a functionf belongs to the space introduced by Le Jan and Sznitman if and only if
�f ∈ PM, � being the Laplacian (in three dimensions). A simple calculation (see [48])
shows that condition (116) is written, in the dyadic decomposition∆j of Littlewood and
Paley in the form 4j‖∆jf ‖PM = 4j‖∆̂jf ‖∞ ∈ �∞(Z) and defines in this way “the ho-

mogeneous Besov space”Ḃ
2,∞
PM.

Let us note that this quantity is not a norm, unless we work inS ′ modulo polynomials,
as we did in Section 2.2 in the case of homogeneous Besov spaces (for example, iff is
a constant or, more generally a polynomial of degree 1, it is easy to see that|ξ |2|f̂ (ξ)| = 0).
Another possibility to avoid this technical point is to ask thatf̂ ∈ L1

loc. In other words, the
Banach functional space relevant to our study is defined by

PM2 =
{
v ∈ S ′ : v̂ ∈ L1

loc,‖v‖PM2 ≡ sup
ξ∈R3

|ξ |2∣∣v̂(ξ)
∣∣< ∞

}
. (117)

A generalization of this functional space was recently introduced in the paper by
Bhattacharya, Chen, Dobson, Guenther, Orum, Ossiander, Thomann and Waymire
(see [8]).

3. Existence theorems

3.1. The fixed point theorem

We will recall here two classical results concerning the existence of fixed point solution
to abstract functional equations. These theorems are known under the name of Picard in
France, Caccioppoli in Italy, and Banach in Poland and. . . in the rest of the world!
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LEMMA 4. Let X be an abstract Banach space with norm‖ · ‖ and B :X × X → X

a bilinear operator such that, for anyx1, x2 ∈ X,∥∥B(x1, x2)
∥∥� η‖x1‖‖x2‖, (118)

then, for anyy ∈ X such that

4η‖y‖ < 1, (119)

the equation

x = y + B(x, x) (120)

has a solutionx in X. In particular, the solution is such that

‖x‖ � 2‖y‖ (121)

and it is the only one such that

‖x‖ <
1

2η
. (122)

The following lemma is a generalization of the previous one (λ = 0) and will be useful
when treating the mild Navier–Stokes equations in the presence of a nontrivial external
force (11).

LEMMA 5. LetX be an abstract Banach space with norm‖ · ‖, L :X → X a linear oper-
ator such that, for anyx ∈ X,∥∥L(x)

∥∥� λ‖x‖ (123)

andB :X × X → X a bilinear operator such that, for anyx1, x2 ∈ X,∥∥B(x1, x2)
∥∥� η‖x1‖‖x2‖, (124)

then, for anyλ, 0 < λ < 1, and for anyy ∈ X such that

4η‖y‖ < (1− λ)2, (125)

the equation

x = y + B(x, x) + L(x) (126)

has a solutionx in X. In particular, the solution is such that

‖x‖ � 2‖y‖
1− λ

(127)
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and it is the only one such that

‖x‖ <
1− λ

2η
. (128)

For an elementary proof of the above mentioned lemmata the reader is referred to [34]
and to [3] where a different proof is given that also applies to the (optimal) case where the
equality sign holds in (119), (122), (125) and (128).

3.2. Scaling invariance

The Navier–Stokes equations are invariant under a particular change of time and space
scaling. More exactly, assume that, inR3 × (0,∞), v(t, x) andp(t, x) solve the system

∂v

∂t
− ν�v = −(v · ∇)v − ∇p,

∇ · v = 0,

(129)

then the same is true for the rescaled functions

vλ(t, x) = λv
(
λ2t, λx

)
, pλ(t, x) = λ2p

(
λ2t, λx

)
. (130)

On the other hand, the functionsv(λt, λx) andp(λt, λx) solve a different Navier–Stokes
system, whereν is replaced byλν, thus allowing us to assume that viscosity is equal to
unity, as we did in Section 1.1 (because, if not, it is possible to find aλ > 0 such that
λν = 1). The above scaling invariance leads to the following definition.

DEFINITION 9. Critical space. A translation invariant Banach space of tempered distrib-
utionsX is called a critical space for the Navier–Stokes equations if its norm is invariant
under the action of the scalingf (x) → λf (λx) for anyλ > 0. In other words, we require
the embedding

X ↪→ S ′ (131)

and that, for anyf ∈ X,∥∥f (·)∥∥= ∥∥λf (λ · −x0)
∥∥ ∀λ > 0,∀x0 ∈ R3. (132)

Critical spaces are all embedded in a same function space, as stated in the following
proposition.

PROPOSITION7 (A remarkable embedding).If X is a critical space, thenX is continu-
ously embedded in the Besov spaceḂ

−1,∞∞ .



Harmonic analysis tools for solving the incompressible Navier–Stokes equations 191

The proof of this result is so simple that we would like to present it here. We argue as
in the proof of the “minimality ofḂ0,1

1 ” given by Frazier, Jawerth and Weiss in [82] (see
also [3,161,166]).

To begin, we note that ifX satisfies (131), then there exists a constantC such that∣∣〈exp
(−|x|2/4

)
, f
〉∣∣� C‖f ‖X ∀f ∈ X. (133)

Now, using the translation invariance ofX we obtain∥∥exp(�)f
∥∥

L∞ � C‖f ‖X (134)

and, by the invariance under the scalingf (x) → λf (λx), we get

t1/2
∥∥exp(t�)f

∥∥
L∞ � C‖f ‖X. (135)

It is now easy to conclude if we recall Proposition 3, say

sup
t>0

t1/2
∥∥exp(t�)f

∥∥
L∞ � ‖f ‖

Ḃ
−1,∞∞ . (136)

As we will see in the following pages, it is a remarkable feature that the Navier–Stokes
equations are well posed in the sense of Hadamard (existence, uniqueness and stability)
when the initial data is divergence-free and belongs to certaincritical function spaces.
Actually, it is unclear whether this property is true for either a generic critical space or
for the bigger critical spacėB−1,∞∞ (see the conjecture formulated in [166], Chapter 8,
and [160]), but it happens to be the case for most of the critical functional spaces we have
described so far.

For example, in the Lebesgue familyLp = Lp(R3) the critical invariant space corre-
sponds to the valuep = 3 (more generally inRn, p = n) and we will see how to construct
mild solutions to the Navier–Stokes equations with data inL3. The same argument ap-
plies to the critical Sobolev spacėH 1/2, to the Morrey–CampanatȯM3

p (1 � p � 3), the

LorentzL(3,q) (1� q � ∞), the pseudo-measure space of Le Jan and SznitmanPM2, the
BesovḂ3/p−1,q

p (1� q � ∞, 1� p < ∞) as well as the Triebel–Lizorkin spacesḞ
3/p−1,q
p

(1 � q < ∞, 1� p < ∞). The reader is referred to [3] for a precise and exhaustive analy-
sis of the Navier–Stokes equations in critical spaces. Here we will only treat the case of the
Lebesgue spaceL3 in detail.

Another (equivalent) way of defining critical spaces for the Navier–Stokes equations
is to note that in this case the nonlinear term∇ · (v ⊗ v) has the same strength as the
Laplace operator; that is∇ · (v ⊗ v) is not subordinate to−�v. For instance, ifv ∈ Lp

(p � 2), then∇ · (v ⊗ v) ∈ Wp/2,−1 whereas−�v ∈ Wp,−2 and, by Sobolev embedding,
Wp/2,−1 ↪→ Wp,−2 as long asp � 3.

Before recalling the main steps of the proof for the existence of mild solution with initial
data inL3, let us begin with an easier case, the so-called ‘supercritical’ spaceLp , p > 3.
We will not give a precise definition of ‘critical’, ‘supercritical’, or ‘subcritical’ spaces.
The meaning of their names should be clear enough to any reader (for more details and
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examples see [34,43]). Let us just notice that what we call here ‘supercritical’ spaces are
called ‘subcritical’ spaces (and vice versa) in the paper by Klainerman [122].

3.3. Supercritical case

The main theorem of the existence of mild solutions inLp , 3< p < ∞, was known since
the papers of Fabes, Jones and Rivière [76] (1972) and Giga [100] (1986). Concerning the
spaceL∞, let us note that the existence was obtained only recently in [34,43] by using the
simplified structure of the bilinear term weintroduced in (34). In fact, as pointed out in
a different proof by Giga and his students in Sapporo [104], the difficulty comes from the
fact that the Leray–Hopf projectionP is not bounded inL∞, nor inL1. The proof we are
going to present applies to 3< p � ∞ and is contained in [34,43]. The idea is of course
to use the fixed point theorem by means of the following two lemmata, whose proofs are
obtained by a simple application of the Young inequality.

LEMMA 6. LetX be a Banach space, whose norm is translation invariant. For anyT > 0
and anyv0 ∈ X, we have

sup
0<t<T

∥∥S(t)v0
∥∥

X
= ‖v0‖X. (137)

Of course this lemma applies for example whenX is a Lebesgue space, in our case
X = Lp with 3< p � ∞.

LEMMA 7. Let 3 < p � ∞ be fixed. For anyT > 0 and any functionsf (t), g(t) ∈
C([0, T );Lp), then the bilinear termB(f,g)(t) also belongs to∈ C([0, T );Lp) and we
have

sup
0<t<T

∥∥B(f,g)(t)
∥∥

p
� T 1/2(1−3/p)

1− 3/p
sup

0<t<T

∥∥f (t)
∥∥

p
sup

0<t<T

∥∥g(t)
∥∥

p
. (138)

Combining these lemmata with the fixed point algorithm Lemma 4 we obtain the fol-
lowing existence result (see Section 5.2 for its uniqueness counterpart).

THEOREM 1. Let 3 < p � ∞ be fixed. For anyv0 ∈ Lp , ∇ · v0 = 0, there exists aT =
T (‖v0‖p) such that the Navier–Stokes equations has a solution inC([0, T );Lp).

To be more precise, according to the notations introduced in Definition 2, we should
write v ∈ C([0, T );PLp), because the solution constructed so far is of course a solenoidal
(i.e., divergence-free) vector field. To simplify the discussion, we prefer not to use such
notation in the following.

We should also remark that the strong continuity atT = 0 is not ensured in the caseL∞,
because this space is nonseparable. In other words, if it is true that

lim
t→0

∥∥v(t) − v0
∥∥

p
= 0, 3 < p < ∞, (139)
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this is not the case ifp = ∞, for the heat semigroupS(t) is not strongly continuous as
t → 0.

There are two ways to restore continuity in the case of a nonseparable Banach spaceX.
The first is to restrict the attention toX∗, the closure ofC∞

0 in X. Then,S(t) is strongly
continuous and the existence theorem applies as stated. On the other hand, ifX is nonsep-
arable, but insteadX is the dual of a separable spaceY (hereX = L∞ and Y = L1),
it is natural to replaceC([0, T );X) with the space we will denoteC∗([0, T );X) con-
sisting of boundedfunctionsv(t) with values inX which have the property thatv is
continuous int with values in X, when X is endowed with theσ(X,Y ) topology
(see [34,43,104,166,216]).

Finally, we will see in the next section that the solution constructed so far is always
regular, unique and stable. This means that the Cauchy problem islocally in time well
posed if the data belong to the supercritical spaceLp , 3< p � ∞. It is an open question
to know whether the solution is actually global in time. The noninvariance of theLp norm,
p �= 3 ensures that such a global result would not depend on the size of the initial data, say
the quantity‖v0‖p (or, more generally, ifν �= 1, the quantity‖v0‖p/ν).

3.4. Critical case

By means of the critical Lebesgue spaceL3 we will see how to construct the existence not
only of local solutions for arbitrary initial data, but also of global ones, for small or highly
oscillating data (this property will be described in detail in Section 4).

Let us begin with an unpleasant remark. If we try to apply the fixed point theorem to the
integral Navier–Stokes equation

v(t) = S(t)v0 −
∫ t

0
S(t − s)P∇ · (v ⊗ v)(s)ds (140)

in the (natural) function space

N = C
([0, T );L3), (141)

we are faced with a difficulty that did not appear in the supercritical case: the bilinear term
B(v,u) = − ∫ t

0 S(t − s)P∇ · (v ⊗ u)(s)ds is not continuous fromN ×N →N .
Of course, the fact that the estimate (138) diverges whenp = 3 is not enough to show the

noncontinuity: first, we would expect a reverse inequality, second, this reverse inequality
should apply to the full vectorial bilinear term (in fact, in a way reminiscent of the so-called
“div–curl” lemma [66], one can imagine that the full bilinear operator is continuous even
if its simplified scalar version is not).

In his unpublished doctoral thesis [183], Oru proved the noncontinuity of the full vecto-
rial term not only in the Lebesgue spaceL3, but also in any Lorentz spaceL(3,q), for any
q ∈ [1,∞):

PROPOSITION 8. The (vectorial) bilinear operatorB is not continuous fromC([0, T );
L(3,q)) × C([0, T );L(3,q)) → C([0, T );L(3,q)), whatever0 < T � ∞ andq ∈ [1,∞) are.
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At about the same time Meyer [166] showed that the critical spaceL(3,∞) is very differ-
ent since:

PROPOSITION 9. The bilinear operatorB is continuous fromC([0, T );L(3,∞)) ×
C([0, T );L(3,∞)) → C([0, T );L(3,∞)) for any0 < T � ∞.

Oru’s theorem is based on the following remark (see also [145]):

LEMMA 8. If X is a critical space in the sense of Definition9 and if the bilinear operator
B is continuous in the spaceC([0, T );X) for a certainT , thenX contains a function of
the form

ω(x)

|x| + φ(x), (142)

whereω does not vanish identically, is homogeneous of degree0, is C∞ outside the origin
andφ is aC∞ function.

In fact, it is possible to prove that functions of the type (142) do not belong toL(3,q), if
q �= ∞ but can be inL(3,∞), thus not contradicting Proposition 9.

Let us note, in passing, that it is very surprising that for a generic critical space we cannot
be sure whether the bilinear term is continuous or not. Another example where it is quite
easy to prove the continuity of the bilinear term (and thus the existence of a solution) is
provided by the critical spacePM2 introduced by Le Jan and Sznitman [138]. We will
describe some important consequences of the continuity of the bilinear term in the spaces
L(3,∞) andPM2 in Sections 6.2 and 6.4.

Let us go back toL3. If we want to find a mild solution with initial data in this space,
there are (at least) three ways to circumvent the obstacle arising from Proposition 8 and are
all based on the following remark: the fixed point algorithm inN is only asufficientcon-
dition to ensure the existence of a solution inN and a different strategy can be considered.

To be more explicit, another sufficient condition leading to the existence of a solution in
N is to find a function spaceF (whose elements are functionsv(t, x) with 0 < t < T and
x ∈ R3) such that:

(1) the bilinear termB(u, v)(t) is continuous fromF ×F →F ,
(2) if v0 ∈ L3, thenS(t)v0 ∈F , and
(3) the bilinear termB(u, v)(t) is continuous fromF ×F →N .

In fact, the first two conditions ensure the existence of a (mild) solutionv(t, x) ∈ F , via
the fixed point algorithm and, thanks to the third condition, this solution belongs toN as
well (if F ↪→ N , the third condition being of course redundant).

The three ways known in the literature to obtain a solutionv(t, x) ∈ N with data inL3

correspond to three different choices of spacesF [47]. For the convenience of the reader
we will briefly recall in the following sectionsthese spaces leading to the same existence
theorem inN that reads as follows.
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THEOREM 2. For anyv0 ∈ L3, ∇ · v0 = 0, there exists aT = T (v0) such that the Navier–
Stokes equations have a local solution inC([0, T );L3). Moreover, there existsδ > 0 such
that if ‖v0‖3 < δ, then the solution is global, i.e., we can takeT = ∞.

As it will be clear in the following pages, here at variance with Theorem 1 we cannot say
that T = T (‖v0‖3). Again, as far as the uniqueness of the solution, the situation is more
delicate and will be revealed in Section 5.3.

3.4.1. Weissler’s space. In 1981, Weissler [234] gave the first existence result of mild
solutions in the half spaceL3(R3+), then Giga and Miyakawa [106] generalized the proof
to L3(Ωb), Ωb an open bounded domain inR3. Finally, in 1984, Kato [114] obtained, by
means of a purely analytical proof (involving only Hölder and Young inequalities and with-
out using any estimate of fractional powers of the Stokes operator), an existence theorem
in the whole spaceL3(R3).

In [34,35,47] we showed how to simplify Kato’s proof. The idea is to take advantage of
the structure of the bilinear operator in its scalar form, as in (34) and (36). In particular,
the divergence∇· and heatS(t) operators can be treated as a single convolution opera-
tor [34]. This is why no explicit conditions on the gradient of the unknown functionv and
no restriction onq (namely 3< q < 6) will be required here, as they were indeed in Kato’s
original paper [114]. In a different context [34,43] and by using the same simplified scalar
structure, it was possible to show the existence of a solution with data in the Lebesgue
spaceL∞ (Section 3.3), even if the Leray–Hopf operatorP is not bounded inL∞.

In order to proceed, we have to recall the definition of the auxiliary spaceKq (3 �
q � ∞) introduced by Weissler and systematically used by Kato. More exactly, this space
Kq is made up by the functionsv(t, x) such that

tα/2v(t, x) ∈ C
([0, T );Lq

)
(143)

and

lim
t→0

tα/2
∥∥v(t)

∥∥
q

= 0, (144)

with q being fixed in 3< q � ∞ andα = α(q) = 1 − 3/q . In the caseq = 3, it is also
convenient to define the spaceK3 as the natural spaceN with the additional condition that
its elementsv(t, x) satisfy

lim
t→0

∥∥v(t)
∥∥

3 = 0. (145)

The theorem in question, that implies Theorem 2, is the following [34]:

THEOREM 3. Let 3 < q < ∞, andα = 1 − 3/q be fixed. There exists a constantδq > 0
such that, for any initial datav0 ∈ L3, ∇ · v0 = 0 in the sense of distributions such that

sup
0<t<T

tα/2
∥∥S(t)v0

∥∥
q

< δq, (146)
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then there exists a mild solutionv(t, x) to the Navier–Stokes equations belonging toN ,
which tends strongly tov0 as time goes to zero. Moreover, this solution belongs to all
spacesKq for all 3 < q < ∞. In particular, (146)holds for arbitraryv0 ∈ L3 provided we
considerT (v0) small enough, and as well ifT = ∞, provided the norm ofv0 in the Besov
spaceḂ−α,∞

q is smaller thanδq .

The existence part of the proof of this theorem is a consequence of the following lem-
mata that we recall here.

LEMMA 9. If v0 ∈ L3, thenS(t)v0 ∈ Kq for any 3 < q � ∞. In particular this implies
(whenT = ∞) the continuous embedding

L3 ↪→ Ḃ−α,∞
q , 3 < q � ∞. (147)

In particular, this lemma implies that the conclusion of Theorem 3 holds not only in
the general case of arbitraryv0 ∈ L3 whenT = ∞, provided the norm ofv0 in the Besov
spaceḂ−α,∞

q is smaller thanδq , but also in the more restrictive case ofv0 ∈ L3 and small
enough inL3, as we recalled in the statement of Theorem 2 and originally proved in the
papers of Weissler, Giga and Miyakawa, and Kato. In other words, a function inL3 can
be arbitrarily large in theL3 norm but small inḂ−α,∞

q . This remark will play a key role
in Section 4. Another important consequence of this lemma is thatL3 and B

−α,∞
q are

different spaces, for|x|−1 ∈ Ḃ
−α,∞
q and|x|−1 /∈ L3 and this will allow the construction of

self-similar solutions in Section 6.
The second lemma we need in order to prove Theorem 3 is the following:

LEMMA 10. The bilinear operatorB(f,g)(t) is bicontinuous fromKq × Kq → Kq for
any3 < q < ∞.

Once these two lemmata are applied for acertainq , 3< q < ∞, one can easily deduce,
provided (146) is satisfied and via the fixed point algorithm, the existence ofa solution
v(t, x) ∈N that tends strongly tov0 at zero and belongs toKq for all 3 < q < ∞.

The latter properties are a consequence of the following generalization of Lemma 10,
applied to the bilinearB term.

LEMMA 11. The bilinear operatorB(f,g)(t) is bicontinuous fromKq × Kq → Kp for

any3 � p <
3q

6−q
if 3 < q < 6; any3 � p < ∞ if q = 6; andq/2� p � ∞ if 6< q < ∞.

The proof of the uniqueness of the solution inN requires a more careful study of the
bilinear term as it will be explained in Section 5.3.

Before moving on to a different strategy to prove Theorem 2, let us mention here that
the limit valueq = ∞ cannot be considered in the statement of Lemma 10 because, if we
use the standard approach to prove the continuity inL∞, we are led to a divergent integral
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(see [166], Chapter 19). Thus, a priori, it is not possible to deduce the existence of a mild
solution inN when the condition expressed by (146) is satisfied forq = ∞, say

sup
0<t<T

t1/2
∥∥S(t)v0

∥∥∞ < δ, (148)

(which means, whenT = ∞, that the norm ofv0 in the Besov spacėB−1,∞∞ is small
enough). If, instead, we just require the strongest condition

sup
0<t<T

t1/2
∥∥S(t)v0

∥∥∞ + sup
0<t<T

∥∥S(t)v0
∥∥

3 < δ (149)

(which means that, whenT = ∞, the norm ofv0 in L3 is small enough), then the existence
of a mild solutionv(t, x) belonging toN can be ensured. Moreover, this solution belongs
to K∞.

Once again, it is obvious that this result implies Theorem 2, at least whenT = ∞. At dif-
ference with the proof of Theorem 3, here we cannot apply the fixed point theorem directly
in K∞, but in the spaceK whose elements are functionsv(t, x) belonging to the intersec-
tion K∞ ∩ N and whose norm is given by sup0<t<T t1/2‖v(t)‖∞ + sup0<t<T ‖v(t)‖3. In
fact, the following lemma:

LEMMA 12. The bilinear operatorB(f,g)(t) is bicontinuous fromK×K → K,

whose proof is contained, for example, in [166], holds true and allows us to conclude.

3.4.2. Calderón’s space. Another way to prove the existence of a solution with data inL3

was discovered by Calderón [32] in 1990 and was independently proposed five years later
in [34] (see [37] for more details).

Here the auxiliary function space will be denoted by the letterM. Its elementsv(t, x)

are such that∥∥|v|∥∥M =
∥∥∥ sup

0<t<T

∣∣v(t, x)
∣∣∥∥∥

3
(150)

is finite.
It is easy to see thatM is continuously embedded inN , because of the following ele-

mentary inequality

sup
0<t<T

∥∥v(t, x)
∥∥

3 �
∥∥∥ sup

0<t<T

∣∣v(t, x)
∣∣∥∥∥

3
. (151)

The method we will pursue here is to solve the mild Navier–Stokes equations inM.
This will be possible because, at variance withN , the bilinear operator is bicontinuous
in M. More precisely, the following two lemmata hold true [32–34].

LEMMA 13. S(t)v0 ∈M if and only ifv0 ∈ L3.
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This lemma, whose proof follows from Hardy–Littlewood maximal function, shows that
the equivalence stated in Proposition 4 is not true if for examples = 0, p = ∞ andq = 3.
In fact, the equivalence under consideration can be seen as a consequence of the well-
known result that the Hardy spaceH3 is equivalent toL3, which in turn is equivalent to
the Triebel–Lizorkin spacėF 0,2

3 . For a more detailed explanation on this subject we refer
the reader to [225,226].

The following lemma concerns the bilinear term [32–34].

LEMMA 14. The bilinear operatorB(f,g)(t) is bicontinuous fromM×M → M.

Before proceeding, we want to make an additional comment here. The fact that the
bilinear operatorB(f,g) is bicontinuous both inM (that is includedin N ) and, as it
was announced by Meyer [166], bicontinuous in the Lorentz spaceC([0, T );L(3,∞)) (that
includesN ), is very peculiar, since Oru showed in [183] thatB(f,g) is not bicontinuous
in the natural spaceN .

This remark being made, let us see how, by a simple variant of the proof above, one can
generalize Lemma 14. In order to do that, let us introduce the spaceHs

p whose elements
v(t, x) are such that

‖v‖Hs
p

=
∥∥∥ sup

0<t<T

∣∣Λ̇sv(t, x)
∣∣∥∥∥

p
< ∞. (152)

HereΛ̇s is as usual the pseudo-differential operator whose symbol in Fourier transform
is given by|ξ |s andΛ̇ = √−� is the Calderón operator.

In other words,Hs
p is the subspace of the natural spaceC([0, T ); Ḣ s

p) obtained by

interchanging the time and space norms. Here,Ḣ s
p = Ḟ

s,2
p corresponds to the so-called

Sobolev–Bessel or homogeneous Lebesgue space. In particular, forp < 3, we have the
following continuous embedding,

Ḣ
3/p−1
p ↪→ L3 = Ḣ 0

3 (153)

which, in turn, gives (p < 3)

H3/p−1
p ↪→ M ↪→ N . (154)

We are now ready to generalize Lemma 14 (p = 3) in the following:

LEMMA 15. Let 3/2 < p < 3 be fixed. The bilinear operatorB(f,g)(t) is bicontinuous

fromM×M → H3/p−1
p .

This lemma should be interpreted as a supplementary regularity property of the bilinear
term as it was extensively analyzed in [34,43,48,186]. By means of a more accurate study
of the cancellation properties of the bilinear term, the limit casep = 3/2 (with the natural
norm in time and space variables) can be included as well (see [48]).
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This remark being made, let us observe that, just by using Lemmas 13 and 14, we are in
a position, via the fixed point algorithm, to prove the existence of a global solution inM
with initial datav0 sufficiently small inL3, say

‖v0‖3 < δ. (155)

However, because the bicontinuity constant arising in Lemma 14 does not depend onT

and the condition (correspondingto (144) in the definition ofKq )

lim
T →0

∥∥∥ sup
0<t<T

∣∣S(t)v0
∣∣∥∥∥

3
= 0 (156)

is not verifiedif v0 ∈ L3, v0 �≡ 0, there is no evidence to guarantee that such a global
solution is strongly continuous at the origin (and thus unique as we will see in the following
pages), and, which is intimately related, that such a solution exists locally in time for an
arbitrary initial datav0 in L3.

We use here the same trick introduced in [34]. More precisely, instead of looking for a
mild solutionv(t, x) ∈M, via the point fixed Lemma 4, we will look for a solution

w(t, x) = v(t, x) − S(t)v0 ∈ M (157)

via the point fixed Lemma 5. More precisely, we will solve the equation

w(t, x) = B̃
(
S(t)v0, S(t)v0

)+ 2B̃
(
w,S(t)v0

)+ B̃(w,w), (158)

where the symmetric bilinear operatorB̃ is defined, in terms ofB, by

B̃(v,u)(t) = B(v,u)(t) + B(u, v)(t)

2
. (159)

We can now take advantage of the particular structure of the heat semigroup appearing
in (158). More exactly, we can generalize the previous lemmata and obtain the following
ones:

LEMMA 16. Letα = 1− 3/q and3< q < ∞ be fixed. Then∥∥∥ sup
0<t<T

tα/2
∣∣S(t)v0

∣∣∥∥∥
q

� Cq‖v0‖3, (160)

and in particular, if v0 ∈ L3, the left-hand side of(160)tends to zero asT tends to zero.

Now α > 0, so (160) is a direct consequence of Proposition 4 and the following Sobolev
embedding (see [225,226])

L3 = Ḟ
0,2
3 ↪→ Ḟ−α,2

q ↪→ Ḟ−α,∞
q . (161)
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LEMMA 17. Letα = 1− 3/q , 3< q < 6, andf (t, x) = S(t)f0, with f0 = f0(x), then the
following estimate holds for the bilinear operator

∥∥B(S(t)f0, S(t)f0
)∥∥

M � Cq

∥∥∥ sup
0<t<T

tα/2
∣∣S(t)f0

∣∣∥∥∥2

q
. (162)

LEMMA 18. Let α = 1 − 3/q , 3 < q < ∞, andf (t, x) = S(t)f0, with f0 = f0(x), and
g = g(t, x) then the following estimate holds for the bilinear operator∥∥B(S(t)f0, g

)∥∥
M � C′

q‖g‖M
∥∥∥ sup

0<t<T

tα/2
∣∣S(t)f0

∣∣∥∥∥
q
. (163)

We can now state the following existence and uniqueness theorem of [34,47] as:

THEOREM 4. Let 3 < q < 6 andα = 1 − 3/q . There exists a constantδq > 0 such that,
for any initial datav0 ∈ L3, ∇ · v0 = 0 in the sense of distributions such that∥∥∥ sup

0<t<T

tα/2
∣∣S(t)v0

∣∣∥∥∥
q

< δq, (164)

then there exists a mild solutionv(t, x) belonging toN , which tends strongly tov0 as time
goes to zero. Moreover, this solution belongs to the spaceM and the functionw(t) defined
in (157)belongs toH3/p−1

p (3/2 < p < 3). In particular, (164)holds for arbitraryv0 ∈ L3

provided we considerT (v0) small enough, and as well ifT = ∞, provided the norm ofv0
in the Triebel–Lizorkin spacėF−α,∞

q is smaller thanδq .

The existence part of the proof is now a consequence of Lemma 5, while its uniqueness
will be treated in Section 5.3.

In order to appreciate the result we have just stated, let us now concentrate on comparing
the hypotheses that arise in the statements of Theorems 3 and 4.

It is not difficult to see that, for anyT > 0 and 3� q � ∞, α = 1− 3/q ,

sup
0<t<T

tα/2
∥∥S(t)v0

∥∥
q

�
∥∥∥ sup

0<t<T

tα/2
∣∣S(t)v0

∣∣∥∥∥
q

(165)

which corresponds, forT = ∞, to the well-known embedding

Ḟ−α,∞
q ↪→ Ḃ−α,∞

q . (166)

This circumstance indicates that, as far as the initial datav0 is concerned, condition (146) is
stronger than (164). However, with regard to the Navier–Stokes equations in the presence
of a nontrivial external force (e.g., the gravity) as described in (11) withφ �≡ 0, Calderón’s
method allows us to obtain some better estimates, in particular, as explained in [47], to
improve the results contained in [56].

Before ending this section, we would like to remark that the idea of interchanging time
and space in the mixed norms can also be adapted in the case of different spaces for the
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Navier–Stokes equations. Explicit calculations were performed in [34] in the case of the
above defined Sobolev-type spaceHs

2 (s � 1/2). In fact, Lemma 15 would be enough to
derive such a result whens = 1/2. However, other less trivial examples can be obtained.

3.4.3. Giga’s space. As we recalled in the previous section, the method for finding
a strongly continuous solution with values inL3 makes use of anad hocauxiliary subspace
of functions that are continuous in thet-variable and take values in a Lebesgue space in the
x-variable. Moreover, Giga proved in [99] that not only does the solution under consider-
ation belong toL∞

t (L3
x) andKq but also, for allq in the interval 3< q � 9, it belongs to

the spaceGq = L
2/α
t (L

q
x), whose elementsf (t, x) are such that

‖f ‖Gq
=:
(∫ T

0

∥∥f (t, x)
∥∥2/α

q
dt

)α/2

< ∞, (167)

T being, as usual, either finite or infinite, andα = α(q) = 1− 3/q .
At this point, one can naturally ask whether these spacesGq can be used, independently,

as auxiliaryad hocsubspaces to prove the existence of a solution with data inL3. This
question arises also in view of the fact thatL

p
t (L

q
x) estimates (and, more generally, the so-

called Strichartz estimates) are frequently used for the study of other well-known nonlinear
partial differential equations, like the Schrödinger one or the wave equation. Even if this
does not lead here to a breakthrough as in the case of the Schrödinger equation, making
direct use ofLp

t (L
q
x) estimates for Navier–Stokes is indeed possible. This was proved by

Kato and Ponce in [118], where, in fact, the authors consider the case of a much larger
functional class, including theGq one.

In what follows, we will focus our attention only on the latter case and prove an existence
theorem of local (resp. global) strong solutions inC([0, T );L3) with initial data (resp.
small enough) in a certain Besov space.

The “Besov language” will provide a very convenient and powerful tool, needed to over-
come difficulties which were absent in the previous section.

As in the previous cases, we will start with an estimate of the linear termS(t)v0 in the
auxiliary spaceGq . We have following lemma.

LEMMA 19. Let 3 < q � 9 andα = 1− 3/q be fixed. Then(∫ T

0

∥∥S(t)v0
∥∥2/α

q
dt

)α/2

� Cq‖v0‖3, (168)

where the integral in the left-hand side of(168)tends to zero asT tends to zero provided
v0 ∈ L3.

Keeping Proposition 4 in mind, this lemma can be proved if we recall the well-known
Sobolev embedding [225,226]

L3 ↪→ Ḃ
−α,2/α
q , (169)
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which holds true as long as 3< q � 9. Here the restrictionq � 9 appears as a limit ex-
ponent in the Sobolev embedding for Besov spaces. A direct proof of (168) is contained
in the papers by Giga [99], Kato [114] and Kato and Ponce [118] and makes use of the
Marcinkiewicz interpolation theorem. In short, our lemma says that ifv0 ∈ L3, thenS(t)v0
is in Gq , and therefore we are allowed to work within that functional framework.

The fact that the left-hand side of (168) tends to zero asT tends to zero can be easily
checked by using the Banach–Steinhaus theorem. What we would like to stress here, is that
this property is of paramount importance, because it will ensure (as in Theorems 3 and 4)
the strong continuity at the origin of the solution given by the fixed point scheme. Once we
get a solution inC([0, T );L3) that tends in the strongL3 topology tov0 as time tends to
zero, this solution will automatically beunique, as we will see in Section 5.3.

Let us now concentrate on the bilinear operator [186].

LEMMA 20. The bilinear operatorB(f,g)(t) is bicontinuous fromGq ×Gq → Gp for any

3< p <
3q

6−q
if 3 < q < 6; any3< p < ∞ if q = 6; andq/2� p � ∞ if 6 < q < ∞.

In the caseq = p this result was originally proved by Fabes, Jones and Rivière [76] and
represents the equivalent of Lemma 10 in the spaceKq .

This lemma can be proved by duality (in thet-variable) in a way reminiscent of
Giga’s method introduced in [99] and based on the Hardy–Littlewood–Sobolev inequal-
ity (see [47]). Here the restrictions on the exponentsp andq come from the Young and
Hardy–Littlewood–Sobolev inequalities. In particular, the valueβ = 0 corresponding to
p = 3 is excluded. This is why Lemma 20cannot be useddirectly to get (as in Lemma 11)
anL∞

t (L3
x) estimate. That appears to be the main difference with the methods involving

the BesovḂ−(1−3/q),∞
q and Triebel–Lizorkin spaceṡF−(1−3/q),∞

q that were considered in
the previous cases. As a matter of fact, the estimates obtained in those spaces, having their
third index equal to∞, are essentially based on the scaling invariance of the Navier–Stokes
equations, which is a very crude property of the nonlinear term. Here, on the contrary, we
need to investigate furtherand to explicitly take into account the oscillatory property of the
bilinear term, say∫

R3
Θ(x)dx = 0 (170)

or, equivalently, the fact that the Fourier transform ofΘ is zero at the origin. Of course, we
are still far away from exploiting the full structure of the bilinear term.

This remark being made, let us now see how to use (170) in the proof of the following
lemma.

LEMMA 21. The bilinear operatorB(f,g)(t) is bicontinuous fromG6 ×G6 →N . In fact,
B(f,g) takes its values inC(0, T ; Ḃ

0,2
3 ), which is a proper subset ofN .

We would like to mention here that a variant of this result was applied in [91,92] in the
proof of the uniqueness theorem for strongL3 solutions (see also [48] for more comments)
as we will see in Section 5.3.
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Let us now outline the proof of Lemma 21, by using once again a duality argument: first
we show thatB(f,g) is bicontinuous fromL4

t (L
6
x) × L4

t (L
6
x) into L∞

t (Ḃ
0,2
3 ) and then we

conclude by a usual argument in order to restore the strong continuity in time [47].
To prove the proposition by duality (in thex-variable), let us consider an arbitrary test

functionh(x) ∈ C∞
0 and let us evaluate

It =
∫

R3

∫ t

0
(t − s)−2Θ

( ·√
t − s

)
∗ (fg)(s)h(x)ds dx. (171)

It is useful here to see thet variable as a fixed parameter. After interchanging the integral
over R3 with the convolution withh(x), and after applying the Hölder inequality (inx)
and the Cauchy–Schwarz inequality (int), we get

|It | �
(∫ t

0
‖fg‖2

3 ds

)1/2(∫ t

0
‖Θu ∗ h‖2

3/2
du

u

)1/2

, (172)

where

Θu = 1

u3Θ

( ·
u

)
. (173)

In order to conclude, we only remark that the oscillatory property ofΘ, say (170), allows
us to consider the quantity(∫ ∞

0
‖Θu ∗ h‖2

3/2
du

u

)1/2

(174)

as an (equivalent) norm on the homogeneous Besov spaceḂ
0,2
3/2. As we observed in Sec-

tion 2.2, if the functionΘ were smooth and compactly supported on the Fourier side, this
would indeed be the usual characterization. Removing the band-limited condition is trivial,
and it turns out that smoothness is not a critical assumption, thus allowing a greater flexi-
bility in the definition of the Besov space. What is certainlynot possibleis to get such an
equivalence if, as is the case forS(t), the functionΘ does not have a zero integral. More
explicitly, a property analogous to the one stated in Proposition 3 would not apply here and,
in general, does not apply for a Besov space of the typeḂ

s,p
q , with s � 0. A counterexam-

ple for s = 0,p = ∞ andq = 3 can be found, for instance, in [34] (Lemma 4.2.10). The
reader should refer to [185] for a very enlightening discussion of the definition of Besov
spaces, and to [82,225,226] for precise results.

Let us go back to the Besov spaceḂ
0,2
3/2. A standard argument shows that the dual space

of Ḃ
0,2
3/2(R

3) is exactly Ḃ
0,2
3 . All this finally implies that the bilinear operatorB(f,g)

is bicontinuous fromL4
t (L

6
x) × L4

t (L
6
x) into L∞

t (Ḃ
0,2
3 ), which completes the proof of

Lemma 21. Moreover, as

Ḃ
0,2
3 ↪→ L3, (175)
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we have obtained ourL∞
t (L3

x) estimation, and even improved it. As in [34,43,48,186], this
provides another example in which the regularity of the bilinear term is better than the
linear one.

We are now in position to prove the following theorem [186]:

THEOREM 5. Let3 < q < 9 andα = 1−3/q be fixed. There exists a constantδq such that
for any initial datav0 ∈ L3, ∇ · v0 = 0 in the sense of distributions such that

(∫ T

0

∥∥S(t)v0
∥∥2/α

q
dt

)α/2

< δq (176)

and then there exists a mild solutionv(t, x) belonging toN , which tends strongly tov0 as
time goes to zero. Moreover, this solution belongs to all the spacesGq (3 < q < 9) and is
such that the fluctuationw(t, x) defined in(157)satisfies

w ∈ C
([0, T ); Ḃ

0,2
3

)
(177)

and

w ∈ L2((0, T );L∞). (178)

Finally, (176)holds for arbitraryv0 ∈ L3 provided we considerT (v0) small enough, and
as well ifT = ∞, provided the norm ofv0 in the Besov spacėB−α,2/α

q is smaller thanδq .

Keeping in mind the previous propositions and remarks, the proof of that theorem is
easily carried out as follows (see [186] for more details).

First, we apply the fixed point algorithm in the spaceGq = L2/α([0, T );Lq) (q andα be-
ing assigned in the statement) to get, by means of Lemma 20, a mild solutionv(t, x) ∈ Gq .
Then, again using Lemma 20, we find thatv(t, x) ∈ Gq for all 3 < q < 9. In particu-
lar v(t, x) ∈ G6 = L4([0, T );L6), which givesv(t, x) ∈ N and (177) (once Lemma 21 is
taken into account).

As we presented in [48], this regularity result can even be improved to getw(t) ∈
C([0, T ); Ḟ

1,2
3/2), which means that the gradient ofw(t) belongs uniformly in time toL3/2

and we observe thaṫF 1,2
3/2 ↪→ Ḃ

0,2
3 . The latter regularity result can be seen in connection

with an estimate derived by Kato [114] that assures that the gradient ofv(t), solution of
Theorem 3 inN , is such thatt1−3/(2q)∇v(t) ∈ C([0, T );Lq) for any q � 3. We proved
in [48] that the functionw(t) satisfies the last estimate for the optimal exponentq = 3/2.

Finally, as the bilinear term is bicontinuous fromGq × Gq into L2
t (L

∞
x ), and arguing by

duality, (µ(s) being a test function), we can obtain the estimate (178), say∣∣∣∣∫ T

0

∥∥B(f,g)(s)
∥∥∞µ(s)ds

∣∣∣∣� ∫ T

0

∫ t

0

‖fg‖q ′/2(s)µ(t)

(t − s)1/2+3/q ′ ds dt � ‖µ‖2. (179)
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4. Highly oscillating data

At difference with Leray’s well-known weak approach, the method described in the pre-
vious pages – the so-called “Tosio Kato’s method” (see the book [88] for many examples
of applications of this method to nonlinear PDEs) – also implies the uniqueness of the
corresponding solution, as it will be explained in Section 5. However, the existence of the
solution holds under a restrictive condition on the initial data, that is required to be small,
which is not the case for Leray’s weak solutions. In Section 7 we will make the link be-
tween this property, the smallness of the Reynolds number associated with the flow, the
stability of the corresponding global solution and the existence of Lyapunov functions for
the Navier–Stokes equations.

The aim of this section is to give an interpretation of the smallness of the initial data in
terms of an oscillation property. The harmonic analysis tools we developed so far will play
a crucial role here.

Let us recall that, as stated in Theorem 3, a global solution inC([0,∞);L3) exists,
provided that the initial datav0 is divergence-free and belongs toL3, and that its norm
is small enough inL3, or more generally, small in the Besov spaceḂ

−α,∞
q (for a certain

3 < q < ∞ andα = 1 − 3/q fixed). In other words, a functionv0 in L3 whose norm is
arbitrarily large inL3 but small enough iṅB−α,∞

q (or in a Triebel–Lizorkin spacėF−α,∞
q

as in Theorem 4, or in the Besov spaceḂ
−α,2/α
q as in Theorem 5) also ensures the existence

of a global mild solution inC([0,∞);L3).
The advantage of using a Besov norm instead of a Lebesgue one is that the condition of

being small enough in a Besov space is satisfied by highly oscillating data (Section 4.1).
A second remarkable property is that thesespaces contain homogeneous functions of de-
gree−1, leading to global self-similar solutions (Section 6). Moreover, Besov spaces led
to the (first) proof of the uniqueness for solutions inC([0,∞);L3) (Section 5.3).

The a posteriori disappointing observation is that. . . Besov spaces were not necessary at
all in any of these discoveries!

4.1. A remarkable property of Besov spaces

In order to appreciate the formulation of Kato’s theorem in terms of the Besov space
Ḃ

−α,∞
q given in Theorem 3, we shall devote ourselves here to illustrating that the condition

‖v0‖Ḃ
−α,∞
q

< δ is satisfied in the particular case of a sufficiently oscillating functionv0.
A typical situation will be given by the following example. Letv0 be an arbitrary (not

identically vanishing) function belonging toL3. If we multiply v0 by an exponential,
say the functionwk = exp[ix · k], we obtain, for anyk ∈ R3, a functionwkv0 such that
(Lemma 22)

lim|k|→∞‖wkv0‖Ḃ
−α,∞
q

= 0, (180)

in spite of the fact that

lim|k|→∞‖wkv0‖3 = ‖v0‖3. (181)
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In other words, the smallness condition‖wkv0‖Ḃ
−α,∞
q

< δ, is verified as long as we choose
a sufficiently high frequencyk. At this point, it is tempting to considerwkv0 as the new
initial data of the problem and to affirm that Kato’s solution exists globally in time, pro-
vided we consider sufficiently oscillating data. One can argue thatwkv0 is no longer a
divergence-free function. Nevertheless, the functionwkv0 is divergence-freeasymptoti-
cally for |k| → ∞, which is exactly the situation we are dealing with. More precisely, it
turns out that (Lemma 23)

lim|k|→∞
∥∥∇ · (wkv0) − wk∇ · v0

∥∥
3 = 0. (182)

LEMMA 22. Let v be an arbitrary function inL3 and letwk(x), k ∈ N, be a sequence of
functions such that‖wk‖∞ � C andwk ⇀ 0 (ask → ∞) in the distributional sense. Then,
the productswkv tend to0 in the strong topology oḟB−α,∞

q (α = 1− 3/q > 0).

The proof of this lemma is quite easy and we wish to present the main components here
(for more details see [34,35]).

We will make use of a density argument. To this end, let us introduce the following
decomposition of the functionv:

v = h + g, (183)

whereh ∈ L3 and

‖h‖3 � ε (184)

andg ∈ C∞
0 . The next step is to recall thecontinuous embedding (Lemma 9)L3 ↪→ Ḃ

−α,∞
q

to infer the following inequality (k � 0)

‖wkh‖Ḃ
−α,∞
q

� ‖wkh‖3 � ε. (185)

On the other hand, Young’s inequality gives (j ∈ Z)∥∥Sj (wkg)
∥∥

q
�
∥∥23jϕ

(
2j ·)∥∥

r
‖wkg‖p, (186)

where

1

q
= 1

r
+ 1

p
− 1. (187)

This implies

2−αj
∥∥Sj (wkg)

∥∥
q

� 2−j (1−3/q)2−j (1−3/r)‖g‖p = 2−j (1−3/p)‖g‖p (188)

so that, for anyk � 0, anyj � j1 > 0 and anyj � j0 < 0, we have

2−αj
∥∥Sj (wkg)

∥∥
q

� ε (189)
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(in fact, if j � j1 we letp = q > 3 and ifj � j0 we let 1� p < 3).
We are now left with the termsSj (wkg) for j0 < j < j1. Making use of the hypothesis

mk ⇀ 0 together with the Lebesgue dominated convergence theorem, we finally find, for
anyk � k0 andj0 < j < j1,

2−αj
∥∥Sj (wkg)

∥∥
q

� ε (190)

which concludes the proof of the lemma.

LEMMA 23. Let m(ξ) ∈ C∞(R3 \ {0}) be a homogeneous function of degree0 and letM
be the convolution operator associated with the multiplierm(ξ). If we consider|ξ0| = 1,
v ∈ Lp and1< p < ∞, then

lim
λ→∞ sup

|ξ0|=1

∥∥M(exp(iλξ0 · x)v(x)
)− exp(iλξ0 · x)m(ξ0)v(x)

∥∥
p

= 0. (191)

In the case we are interested in, this lemma will be used forp = 3 and withM replaced
by the Leray–Hopf projection operatorP onto the divergence-free vector fields andm(ξ)

replaced by a 3× 3 matrix whose entries are homogeneous symbols of degree 0.
In order to prove the lemma in its general form, we remark that the symbol of the opera-

tor exp(−iλξ0 · x)M(exp(iλξ0 · x)v) − m(λξ0)v(x) is given bym(ξ + λξ0) − m(λξ0), this
by virtue of the homogeneity ofm.

Equation (191) will now be proved by means of a density argument. In fact, it is sufficient
to limit ourselves to functionsv ∈ V ⊂ Lp , whereV is the dense subspace ofLp defined
by v ∈ S and the Fourier transform̂v of v has compact support. Now, we put

vλ = exp(−iλξ0 · x)M
(
exp(iλξ0 · x)v

)− m(λξ0)v, (192)

then the Fourier transform ofvλ is given by

v̂λ(ξ) = [m(ξ + λξ0) − m(λξ0)
]
v̂(ξ). (193)

Finally, v̂ has compact support, say in|ξ | � R, and then

m(ξ + λξ0) − m(λξ0) = rλ(ξ), (194)

where, on|ξ | � R, rλ(ξ) → 0 together with all its derivatives in theL∞ norm. We thus
havevλ → 0 in S whenλ → ∞. A fortiori, ‖vλ‖p → 0 whenλ → ∞, and the lemma is
proved.

4.2. Oscillations without Besov norms

Some years after the publication of [34,35] Temam [217] informed us that the prop-
erty we described in the previous pages, that highly oscillating data lead to global
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solutions to Navier–Stokes, was implicitly contained in the pioneering papers of Kato and
Fujita [87,117] of 1962.

These papers deal with mild solutions to Navier–Stokes that are continuous in time and
take values in the Sobolev spaceḢ s , sayv ∈ C([0, T ); Ḣ s). It is easy to see, in the three-
dimensional case, that the critical Sobolev space corresponds to the values = 1/2. More
precisely, the Sobolev spaceṡHs , s > 1/2 are super-critical. In other words, as far as the
scaling is concerned, they have the same invariance as the Lebesgue spacesLp if p > 3.
This means that, using the simplified version of the bilinear operator, one can easily prove
the existence of a local mild solution for arbitrary initial data [34], that is, the theorem.

THEOREM 6. Let 1/2 < s < ∞ be fixed. For anyv0 ∈ Ḣ s , ∇ · v0 = 0, there exists aT =
T (‖v0‖s ) such that the Navier–Stokes equations have a mild solution inC([0, T ); Ḣ s).

On the other hand, in the critical cases = 1/2, one can ensure the existence of a local
solution, that turns out to be global when the initial data are small enough:

THEOREM 7. There exists a constantδ > 0 such that for any initial datav0 ∈ Ḣ 1/2,
∇ · v0 = 0 in the sense of distributions, such that

‖v0‖Ḣ1/2 < δ, (195)

then there exists a mild solutionv(t, x) to the Navier–Stokes equations belonging to
C([0,∞); Ḣ 1/2).

In the particular cases = 1, we also have at our disposal a persistence result, namely:

THEOREM 8. There exists a constantδ > 0 such that if the initial datav0 ∈ Ḣ 1/2 ∩ Ḣ 1,
∇ · v0 = 0 in the sense of distributions and satisfies

‖v0‖Ḣ1/2 < δ, (196)

then the mild solutionv(t, x) to the Navier–Stokes equations, whose existence is ensured
by Theorem7, also belongs toC([0,∞); Ḣ 1).

To prove such a result, it is enough to show that theḢ 1 norm of the solution is a Lya-
punov function, which means that it is decreasing in time. The study of the Lyapunov
functions for the Navier–Stokes equations will be examined in detail in Section 7.1.

Actually, to obtain a global mild solution in the spaceC([0,∞); Ḣ 1) it would be enough
to get a uniform estimate of the kind∥∥v(t)

∥∥
Ḣ1 � ‖v0‖Ḣ1 ∀t > 0, (197)

because a classical “bootstrap” argument will allow to pass from a local solution to a global
one.
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This property turns out to be satisfied when the initial datav0 ∈ Ḣ 1 has a sufficiently
small norm in the spacėH 1/2. More precisely, as we will describe in detail in Section 7.1,
the following inequality is proven in the celebrated papers by Kato and Fujita [87,117]:

d

dt

∥∥v(t)
∥∥2

Ḣ1 � −2
∥∥v(t)

∥∥2
Ḣ2

(
ν − C

∥∥v(t)
∥∥

Ḣ1/2

)
. (198)

This immediately implies the aforementioned property of decrease in time of the homo-
geneous norm‖v‖Ḣ1 , as long as‖v0‖Ḣ1/2 is small enough. On the other hand, it is easy to
show that theL2 norm of the solutionv also decreases in time, say

d

dt

∥∥v(t)
∥∥2

2 = −2ν
∥∥∇v(t)

∥∥2
2 < 0, (199)

which allows us to deduce the decreasing of the nonhomogeneous norm‖v‖H1 as well.
Now, Temam’s remark is very simply and reads as follows. Supposev0 ∈ S ′ is such that

v̂0(ξ) = 0 if |ξ | � R, then

‖v0‖Ḣ1/2 � R−1/2‖v0‖Ḣ1 (200)

and thus one can get the existence of a global mild solution inC([0,∞); Ḣ 1) provided the
initial data is concentrated at high frequencies (R � 1), say highly oscillating!

4.3. The result of Koch and Tataru

In his doctoral thesis [186,187], Planchon gave the precise interpretation of the persistence
result stated in Theorem 8, replacing the smallness of theḢ 1/2 norm of the initial data,
with the smallness (or oscillation) in a Besov space. Everything takes place as in [34] for
the critical spaceL3: there exists an absolute constantβ > 0 such that if‖v0‖Ḃ

−1/4,∞
4

< β

andv0 ∈ Ḣ 1, then there exists a global solution inC([0,∞); Ḣ 1). What make things work
here is that, even ifḢ 1 is not a critical space, it is embedded iṅH 1/2 (which is not the
case for any Lebesgue spaceLp , p � 3, when working in unbounded domains asR3).
The importance of such a result is that it allows us to obtainglobalandregularsolutions in
the energy spacėH 1, under the hypothesis of oscillation of the initial data. In other words,
at variance with theL3 setting, we can establish a link between Leray’s weak solutions and
Kato’s mild ones.

This approach was generalized first by Koch and Tataru [123] and then by Furioli,
Lemarié, Zahrouni and Zhioua [89,93,145,240]. Both of these results seem optimal.

Roughly speaking the theorem by Koch and Tataru says that if the norm of the initial
data is small enough inthe critical spaceBMO−1, then there is a global mild solution for
the Navier–Stokes equations. Again, the norm of the product of a fixed function inL3

times an oscillating function, saywk = exp[ix · k], tends to zero as|k| tends to infinity.
It is not clear whether this theorem is optimal, because, if it is true that it generalizes the
results of the previous section (in factBMO−1 containsL3 as well asḂ−α,∞

q , for any
3 < q < ∞ andα = 1 − 3/q), we should recall thatBMO−1 is contained in the biggest
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critical spaceḂ−1,∞∞ (as stated in (77) and Proposition 7) and nobody knows whether the
Navier–Stokes system is well posed in this space (see [166]). Incidentally, we wish to
remind the reader that Montgomery-Smith proved a blow-up result in the spaceḂ

−1,∞∞ for
a modified (with respect to the nonlinear term) Navier–Stokes equations [176]. Moreover,
his result also shows there is initial data that exists in every Triebel–Lizorkin or Besov
space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the
solution of the Navier–Stokes-like equation is in no Triebel–Lizorkin or Besov space (and
hence in no Lebesgue or Sobolev space).

On the other hand, the persistence result by Furioli, Lemarié, Zahrouni and Zhioua
says that if the initial data is not only small inBMO−1, but also belongs to the Banach
spaceX, whereX can be either the Lebesgue spaceLp , 1 � p � ∞, or the inhomoge-
neous Besov spaceBs,p

q with 1 � p � ∞, 1 � q � ∞ ands > −1, or the homogeneous
Besov spacėBs,p

q with 1 � p � ∞, 1� q � ∞ ands > −1, then the corresponding solu-
tion also belongs toL∞((0,∞);X).

In order to simplify the discussion, we will limit ourselves to present only global so-
lutions. However, solutions which are local in time as we previously constructed in the
critical spaceL3 are also available. More exactly, we are talking about the following re-
sults.

THEOREM 9. There exists a constantδ > 0 such that, for any initial datav0 ∈ BMO−1

that verifies

‖v0‖BMO−1 < δ, (201)

then there exists a global mild solutionv(t, x) to the Navier–Stokes equations such that

√
tv(t, x) ∈ L∞((0,∞),R3) (202)

and

sup
t>0,x0∈R3

1

t3/2

∫
0<τ<t

∫
|x−x0|<

√
t

∣∣v(τ, x)
∣∣2 dτ dx < ∞. (203)

The proof of this theorem is contained in the paper of Koch and Tataru [123]. The con-
dition expressed by (203), comes from the fact that a Carleson measure characterization of
BMO−1 (see [214]) says that a functionv0 belongs toBMO−1 if and only if

sup
t>0,x0∈R3

1

t3/2

∫
0<τ<t

∫
|x−x0|<

√
t

∣∣S(τ)v0
∣∣2 dτ dx < ∞, (204)

S(τ) = exp(τ�) denoting, as usual, the heat semigroup. On the other hand, this condition
seems the weaker possible one, sayBMO−1 seems the largest space where local or global
solutions exist. In fact, as we recalled in Section 1.2, in order to give a sense to the Navier–
Stokes equations we want to have at least

v(t, x) ∈ L2
loc

([0,∞);R3). (205)
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Now the Navier–Stokes equations are invariant with respect to scaling, hence we want a
scale and translation invariant version ofL2-boundedness, say

sup
t>0,x0∈R3

1

|Bt (x)|
∫ ∫

Bt (x)×[0,t2]
∣∣v(τ, x)

∣∣2 dτ dx < ∞ (206)

(where|Bt(x)| denotes the Lebesgue measure of the ballBt (x) centered atx and radiust),
which is precisely the condition expressed by (203).

Finally, let us quote the persistence result announced in [93].

THEOREM 10. Let v0 verify the condition of Theorem9 and v(t, x) the corresponding
global solution, then ifX is one of the following Banach spaces:

LebesgueLp, 1� p � ∞, (207)

or

inhomogeneous BesovBs,p
q , 1� p � ∞,1 � q � ∞, s > −1, (208)

or

homogeneous Besov̇B
s,p
q , 1 � p � ∞,1� q � ∞, s > −1, (209)

then the corresponding solution also belongs toL∞((0,∞);X).

From the sketch of the proof contained in [93] it is clear that this result applies more
generally to any Banach spaceX such that the following condition is satisfied

‖fg‖X �
(‖f ‖X‖g‖∞ + ‖g‖X‖f ‖∞

)
, (210)

as is the case for the spaces quoted above as well as for the Sobolev spaceHs , s � 1/2.

5. Uniqueness theorems

In 1994 Jean Leray summarized the state of the art for the Navier–Stokes equations in the
following way [150]:

A fluid flow initially regular remains so over a certain interval of time; then it goes on indefinitely;
but does it remain regular and well-determined? We ignore the answer to this double question. It
was addressed sixty years ago in an extremely particular case [149]. At that time H. Lebesgue,
questioned, declared: “Don’t spend too much time for such a refractory question. Do something
different!”

This is not the case for Kato’s mild solutions for which a general uniqueness theorem,
that is the subject of this section, is available. In order to appreciate the simplicity of its
proof, let us start by recalling why the uniqueness of weak solutions remains a challenging
question.
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5.1. Weak solutions

Before dealing with the uniqueness of weak solutions for Navier–Stokes, let us examine
a more general case. We consider the differencev1 − v2 of two weak solutionsv1 andv2
that, for the moment, may take different initial values (i.e.,v1(0) − v2(0) is not necessarily
zero), but with the same boundary conditions, sayv1(t, x) − v2(t, x) = 0 if x ∈ ∂Ω for all
t > 0 (this is always the case if we suppose the no-slip boundary conditions,v1 = v2 = 0
on (0, T ) × ∂Ω)). Of course, ifΩ is unbounded, this condition concerns the behavior of
the solutions at infinity.

We obtain

∂

∂t
(v1 − v2) + v1 · ∇(v1 − v2) + (v1 − v2) · ∇v2 = �(v1 − v2) − ∇(p1 − p2)

(211)

and if we take the inner product〈·, ·〉 of L2(Ω) with (v1 − v2) we finally get

1

2

d

dt
‖v1 − v2‖2

2 + ∥∥∇(v1 − v2)
∥∥2

2 = −〈(v1 − v2) · ∇v2, v1 − v2
〉
. (212)

In fact, since(v1 − v2)(t, x) = 0 if x ∈ ∂Ω for all t > 0, Green’s formula gives〈
v1 · ∇(v1 − v2), v1 − v2

〉
= −〈∇ · v1, |v1 − v2|2

〉− 〈v1 · ∇(v1 − v2), v1 − v2
〉= 0 (213)

and 〈∇(p1 − p2), v1 − v2
〉= −〈p1 − p2,∇ · (v1 − v2)

〉= 0. (214)

Thus, we obtain

1

2

d

dt
‖v1 − v2‖2

2 + ∥∥∇(v1 − v2)
∥∥2

2 � ‖∇v2‖∞‖v1 − v2‖2
2 (215)

which finally gives, via Gronwall’s lemma, the estimate

∥∥(v1 − v2)(s)
∥∥2

2 + 2
∫ s

0

∥∥∇(v1 − v2)
∥∥2

2 dt

�
∥∥(v1 − v2)(0)

∥∥2
2 exp

(∫ s

0
2‖∇v2‖∞ dt

)
(216)

and implies uniqueness of weak solutions as long as the (formal) manipulations we have
performed are justified and the quantity

∫ s

0 ‖∇v2‖∞ dt remains bounded. In particular,
this argument shows the uniqueness of classical smooth solutions. More precisely, ifone
smooth weak solution, sayv2, exists and is such that

∫ s

0 ‖∇v2‖∞ dt remains bounded, then
all weak solutions have to coincide with it.
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But there is another way to estimate the term−〈(v1 − v2) · ∇v2, v1 − v2〉, say∣∣〈(v1 − v2) · ∇v2, v1 − v2
〉∣∣� ‖∇v2‖2‖v1 − v2‖2

4 (217)

which suggests the use of the Sobolev inequality

‖v1 − v2‖4 � c‖v1 − v2‖1−n/4
2

∥∥∇(v1 − v2)
∥∥n/4

2 (218)

wheren = 2 orn = 3 denotes, as usual, the space dimension. Now, if we consider the two
cases separately, we obtain after some straightforward calculations (see [110,235])

∥∥(v1 − v2)(s)
∥∥2

2 �
∥∥(v1 − v2)(0)

∥∥2
2 exp

(
c

∫ s

0
‖∇v2‖2

2 dt

)
(219)

if n = 2, and

∥∥(v1 − v2)(s)
∥∥2

2 �
∥∥(v1 − v2)(0)

∥∥2
2 exp

(
c

∫ s

0
‖∇v2‖4

2 dt

)
(220)

if n = 3.
If we make use of the energy inequality (21), which is the only information on weak

solutions we can (and should) use here, it is easy to conclude and get a uniqueness result
only in the casen = 2. In fact, nothing can be said ifn = 3 because, at variance with the
casen = 2, the energy inequality does not allow us here to treat the term

∫ s

0 ‖∇v2‖4
2 dt . If

we could, we would of course not only obtainuniqueness, but also continuous dependence
on initial data and the full regularity of the solution.

A third way to obtain uniqueness was suggested by Serrin [208,209] and improved later
on by many authors. The idea is that if some additional integrability property is satisfied
by at least oneweak solution, more exactly, ifv2 ∈ Ls((0, T );Lr) and if 2/s + n/r = 1
with n < r � ∞, thenall weak solutions have to coincide with it (recently, Kozono and
Taniuchi in [126] considered the marginal cases = 2, r = ∞ in a larger class, sayv2 ∈
L2((0, T );BMO), see also [127,194]). In general, ifv2 is a weak solution, it is possible to
prove that there exists0 andr0 such that 2/s0+n/r0 = n/2 so thatv2 ∈ Ls0((0, T );Lr0). In
particular, from this remark and Serrin’s criterion we can recover, in the two-dimensional
case, the uniqueness result shown above. But, again, in three dimensions this is not enough
to conclude.

Finally, concerning the critical exponentsn = r and s = ∞, Serrin’s result was
adapted by von Wahl [232] (resp. by Kozono and Sohr [125]) to obtain the follow-
ing result. Suppose thatone weak solution, sayv2, satisfiesv2 ∈ C([0, T );Ln) (resp.
v2 ∈ L∞((0, T );Ln)), then all weak solutions have to coincide with it (for a different
proof see the papers of Lions and Masmoudi [152–154]). More recently, the smoothness
of such a weak solution was proved by Escauriaza, Seregin and Sverák [75]. On the other
hand, Montgomery-Smith announced in [177] a logarithmic improvement over the usual
Serrin condition.

These types of results are known under the equivalence “weak= strong”. In other words
it is possible to show that if there exists a more regular weak solution, then the usual one
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(whose existence was proved by Leray) and such a regular solution necessarily coincide.
The moral of the story is that if wepostulatemore regularity on weak solutions, then the
uniqueness follows. In particular this argument shows that the uniqueness, the continuous
dependence on the initial data and the regularity problems for the Navier–Stokes equations
are closely related. In other words, any global weak solution coincides with a more regular
one as long as such a solution exists.

It is also clear from this remark and from theanalysis performed in Section 3, that if
a weak solutionv exists and if the initial datav0 ∈ L3, then the solution is a strong one
on some interval[0, T ) with T > 0 (hencev(t) is smooth for 0< t < T ). Moreover, we
may takeT = ∞ if ‖v0‖3 is small enough. In fact, as we recalled in Section 3, there
exists a strong solutionu ∈ C([0, T );L3) with T > 0, with u0 = v0 and satisfying Serrin’s
criterion. This is a simple consequence of (167) and follows directly from the result by von
Wahl [232] and by Kozono and Sohr [125] (see [114]).

On the other hand, we cannot apply the uniqueness result of von Wahl to prove the
uniqueness of mild solutions inC([0, T );Lp) (neither for the critical casep = 3 nor for
the supercritical onep > 3) because the initial data only belong toLp and, in general, not
to L2. There are of course two exceptions: the case of a bounded domain and the case of the
space dimension two. As a matter of fact, ifΩb is a bounded domain inR3, by means of the
embeddingLp(Ωb) ↪→ L2(Ωb), if p > 2 (ratherp � 3 so that the existence of a solution
is guaranteed, as we have seen in Section 3) and von Wahl’s uniqueness theorem, it is
possible to prove that Leray’s weak solutions coincide with Kato’s mild ones, so that their
uniqueness follows in a straightforward manner [92]. In the same way, if we considerR2

instead ofR3, it is obvious that the uniqueness criterion of von Wahl gives uniqueness of
mild solutions with data in the critical spaceL2(R2) (the supercritical caseLq(R2), q � 2,
always being easier to treat as we are going to see in the following section). In other words,
once again, in two dimensions there is no mystery concerning uniqueness: Leray’s theory,
based on the energy spaceL2(Rn), is in a perfect agreement with Kato’s one, based on the
invariant spaceLn(Rn), because the two spaces involved coincide ifn = 2.

5.2. Supercritical mild solutions

From the previous discussion it is clear that we will limit ourselves to the case of the
whole three-dimensional spaceR3. Of course,mutatis mutandis, the results of this and the
following sections apply as usual toRn, n � 2, as well. A very simple case is provided
by the uniqueness of mild solutions in supercritical spaces. For example, in the case of the
Lebesgue spacesLp , p > 3, the following result holds true:

THEOREM 11. Let3 < p � ∞ be fixed. For anyv0 ∈ Lp , ∇ ·v0 = 0,and anyT > 0, there
exists at most a mild solution inC([0, T );Lp) to the Navier–Stokes equations. In other
words, the solutionv(t, x) given by Theorem1 is unique in the spaceC([0, T );Lp).

The proof of this property is so simple that we wish to sketch it here. Let us suppose that
v1(t, x) ∈ C([0, T );Lp) andv2(t, x) ∈ C([0, T );Lp) solve the mild integral equation

vi(t) = S(t)v0 + B(vi , vi)(t), i = 1,2, (221)
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with the same initial datav0. Then, by taking the difference between these equations

v1 − v2 = B(v1, v1 − v2) + B(v1 − v2, v2) (222)

and using (138), we get

sup
0<t<T

∥∥(v1 − v2)(t)
∥∥

p

� η(T ,p)
(

sup
0<t<T

∥∥v1(t)
∥∥

p
+ sup

0<t<T

∥∥v2(t)
∥∥

p

)
sup

0<t<T

∥∥(v1 − v2)(t)
∥∥

p
, (223)

where

η(T ,p) = T 1/2(1−3/p)

1− 3/p
. (224)

We can always takeT = T ′ small enough in order to obtain

η
(
T ′,p

)(
sup

0<t<T ′

∥∥v1(t)
∥∥

p
+ sup

0<t<T ′

∥∥v2(t)
∥∥

p

)
< 1 (225)

which obviously impliesv1 = v2 in C([0, T ′);Lp). Now, it is also easy to see that this
argument can be iterated to get uniqueness up to time 2T ′ (and so on to 3T ′, etc.). In other
words, as explained in the papers by Kato and Fujita [117] (p. 254) and [87] (p. 290), the
iteration scheme is well posed and leads to uniqueness up to timeT .

5.3. Critical mild solutions

In this section we are interested in the proof of the uniqueness of the solution given by
Theorem 2. The historical details describing the achievement of this result are contained
in [37] and for a systematic approach of the existence and uniqueness problem for mild
solutions, the reader is also referred to the papers of Amann [1].

Let us note from the very beginning that, by a simple application of Lemma 4 and
Theorem 3, it is always possible to ensure the uniqueness of a mild local solutionv(t, x)

in a critical space (e.g.,C([0, T );L3)) associated with an initial datum (resp.v0 ∈ L3,
∇ ·v0 = 0), if we just require that it belongs to one of the auxiliary spaces described before
(introduced by Weissler, Calderón and Giga) and if the norm of the solutionv(t, x) in
such a space is smaller than a given constant (for example, smaller than 2‖v0‖3, as follows
directly from (119), (121) and (122)). Even if this remark is trivial and despite the fact that
the condition under which the uniqueness is satisfied is very restrictive, we will use this
elementary uniqueness result in Section 6 devoted to the proof of existence of self-similar
solutions for the Navier–Stokes equations.

Since the introduction at the beginning of the 1960s of the mild formulation of the
Navier–Stokes equations by Kato and Fujita [87,117], other results were discovered, en-
suring the uniqueness of the corresponding solution under several regularity hypotheses
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neart = 0. In the simplest case, when the solutions belong toC([0, T );L3), these addi-
tional conditions are written [114] limt→0 t

α
2 ‖v(t)‖q = 0,α = 1− 3

q
,3 < q < ∞, or [100],

for the same values ofα andq , v ∈ L
2
α ((0, T ),Lq). In fact, as we described in detail in

Section 3.4, the use of one of these two auxiliary norms (corresponding to two auxiliary
subspaces ofC([0, T );L3)) makes it possible to apply the fixed point algorithm to obtain
the existence of mild solutions inC([0, T );L3). This is the reason why, in one of these
subspaces, the uniqueness of the solution canbe guaranteed as well. For example, the fol-
lowing result was known since the fundamental papers by Kato and Fujita.

THEOREM 12. Let 3 < q � ∞ be fixed. For anyv0 ∈ L3, ∇ · v0 = 0, and anyT > 0,
there exists at most a mild solution to the Navier–Stokes equations such thatv(t, x) ∈
C([0, T );L3), t1/2(1−3/q)v(t, x) ∈ C([0, T );Lq) and the following condition is satisfied

lim
t→0

t1/2(1−3/q)
∥∥v(t)

∥∥
q

= 0. (226)

In other words, using the notation of Section 3.4, Theorem 12 guarantees unique-
ness (only) in the subspaceN ∩ Kq , 3 < q � ∞. If q = ∞, the uniqueness is treated
in detail in [166]. If 3 < q < ∞, the proof follows directly from Lemma 10. In
fact, if vi , i = 1,2 are two solutions that verifyt1/2(1−3/q)vi(t, x) ∈ C([0, T );Lq) and
limt→0 t1/2(1−3/q)‖vi(t)‖q = 0 we have by Lemma 10 (here 3< q < ∞)

sup
0<t<T

t1/2(1−3/q)
∥∥(v1 − v2)(t)

∥∥
q

� sup
0<t<T

t1/2(1−3/q)
∥∥(v1 − v2)(t)

∥∥
q

×
(

sup
0<t<T

t1/2(1−3/q)
∥∥v1(t)

∥∥
q

+ sup
0<t<T

t1/2(1−3/q)
∥∥v2(t)

∥∥
q

)
(227)

and it is possible to choseT = T ′ small enough so that(
sup

0<t<T ′
t1/2(1−3/q)

∥∥v1(t)
∥∥

q
+ sup

0<t<T ′
t1/2(1−3/q)

∥∥v2(t)
∥∥

q

)
< 1, (228)

thus implying uniqueness (again, let us state that this argument can be iterated in time as
in the proof of Theorem 11).

Of course, the previous result is not satisfactory and one would expect that the following
result holds true.

THEOREM 13. For any v0 ∈ L3, ∇ · v0 = 0 and anyT > 0, there exists at most a mild
solution to the Navier–Stokes equations such thatv(t, x) ∈ C([0, T );L3).

The first proof of Theorem 13, say of the uniqueness inC([0, T );L3) without any ad-
ditional hypothesis (that was followed by at least five different other proofs [143,147]),
was obtained in 1997 and was based on two well-known ideas. The first one is that
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it is more simple to study the bilinear operatorB(v,u)(t) in a Besov frame [34]; the
second is that it is helpful to distinguish in the solutionv the contribution from the
tendency exp(t�)v0 and from the fluctuationB(v, v)(t), the latter function always be-
ing more regular than the former [34]. More precisely, Furioli, Lemarié and Terraneo
in [91,92] were able to prove the uniqueness theorem in its optimal version, say Theo-
rem 13, by using the bicontinuity of the scalar operatorB(f,g)(t) (and thus the vectorial
as well) respectively fromL∞((0, T );L3) × L∞((0, T );L3) → L∞((0, T ); Ḃ

1/2,∞
2 ) and

from L∞((0, T ); Ḃ
1/2,∞
2 ) × L∞((0, T );L3) → L∞((0, T ); Ḃ

1/2,∞
2 ).

What is remarkable is that, contrary to what one would expect, the spacesL3 andḂ
1/2,∞
2

are not comparable. The fact that the Besovspace of the positive regularity index played
only a minor role in the paper [92] led naturally to the question whether one could do
without it. Some months after the announcement of the uniqueness theorem of Lemarié
and his students, Meyer showed how to improve this result. The distinction between the
fluctuation and the tendency was not used, the time–frequency approach was unnecessary
and the Besov spaces did not play any role. Meyer’s proof shortened the problem to the
bicontinuity of the bilinear termB(f,g)(t) in the Lorentz spaceL(3,∞) and more precisely,
as stated in Proposition 9, inC([0, T );L(3,∞)) [166]. This result by itself is even more
surprising because, as we recalled in Section 3, Oru proved otherwise that, in spite of all the
cancellations that it contains, the full vectorial bilinear termB(v,u)(t) is not continuous
in C([0, T );L3) [183].

Let us now see how Proposition 9 simply implies Theorem 13. Letv1 andv2 two mild
solutions inC([0, T );L3) with same initial datav0 ∈ L3 and consider their difference

v1 − v2 = B(v1, v1 − v2) + B(v1 − v2, v2)

= B
(
v1 − S(t)v0, v1 − v2

)+ B
(
S(t)v0, v1 − v2

)
+ B

(
v1 − v2, v2 − S(t)v0

)+ B
(
v1 − v2, S(t)v0

)
. (229)

Now, by means of Proposition 9 (via the embeddingL3 ↪→ L(3,∞)) and of a slight modifi-
cation of Lemma 18, we get the following estimate

sup
0<t<T

∥∥(v1 − v2)(t)
∥∥

L3,∞

� sup
0<t<T

∥∥(v1 − v2)(t)
∥∥

L3,∞
(

sup
0<t<T

t1/2(1−3/q)
∥∥S(t)v0

∥∥
q

+ sup
0<t<T

∥∥v1 − S(t)v0
∥∥

L3 + sup
0<t<T

∥∥v2 − S(t)v0
∥∥

L3

)
, (230)

whereq can be chosen in the interval 3< q � ∞ (for instanceq = ∞ in the proof con-
tained in [166]). Finally, it is possible to choseT = T ′ small enough so that(

sup
0<t<T ′

t1/2(1−3/q)
∥∥S(t)v0

∥∥
q

+ sup
0<t<T ′

∥∥v1 − S(t)v0
∥∥

L3 + sup
0<t<T ′

∥∥v2 − S(t)v0
∥∥

L3

)
< 1, (231)
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this property being a direct consequence of Lemma 9 and of the strong continuity in time
of the L3 norm of the solutionsv1 andv2. From this estimate we deduce that locally in
timev1 − v2 is equal to zero in the sense of distribution, thusv1 − v2 is equal to zero inL3

in the interval 0� t � T ′ and the argument can of course be iterated in the time variable.
The proof of the uniqueness of the solution in the more general cases given by Theo-

rems 3–5 (say, when the initial data belongs to a Besov space) is contained in [92].
To conclude, we wish to present a different proof of the uniqueness result from the one

contained in [166], based on Proposition 9. In fact, following [36,48], we will give here a
more precise result.

PROPOSITION 10. Let 3/2 < q < ∞ and 0 < T � ∞ be fixed. The bilinear op-
erator B(f,g)(t) is bicontinuous fromL∞((0, T );L(3,∞)) × L∞((0, T );L(3,∞)) →
L∞((0, T ); Ḃ

3/q−1,∞
q ).

We will prove this proposition by duality, as we did in the proof of Lemmas 20 and 21.
Let us consider a test functionχ(x) ∈ C∞

0 and evaluate the duality product inR3 with the
bilinear term. We get

∣∣〈B(f,g)(t),χ
〉∣∣� ∫ t

0

∣∣∣∣〈s−2Θ

( ·√
s

)
∗ χ, (fg)(t − s)

〉∣∣∣∣ds. (232)

If we had at our disposal a generalization of the classical Young’s inequality

‖a ∗ b‖∞ � ‖a‖3/2‖b‖3, (233)

we could hope to modify the following argument that gives the continuity ofB(f,g) from
L∞((0, T );L3) × L∞((0, T );L3) → L∞((0, T ); Ḃ

1,∞
3/2 ), that is,∣∣〈B(f,g)(t),χ

〉∣∣
�
(

sup
0<t<T

∥∥fg(t)
∥∥

3/2

)∫ t

0

∥∥∥∥s−2Θ

( ·√
s

)
∗ χ

∥∥∥∥
3

ds

� 2
(

sup
0<t<T

∥∥f (t)
∥∥

3

)(
sup

0<t<T

∥∥g(t)
∥∥

3

)∫ ∞

0
u

∥∥∥∥ 1

u3
Θ

( ·
u

)
∗ χ

∥∥∥∥
3

du

u

�
(

sup
0<t<T

∥∥f (t)
∥∥

3

)(
sup

0<t<T

∥∥g(t)
∥∥

3

)
‖χ‖

Ḃ
−1,1
3

, (234)

the last estimate being a consequence of the equivalence of Besov norms given in Proposi-
tion 3.

Now, the generalized Young’s inequality applied to the Lorentz spaces [111]

‖a ∗ b‖r � Cp,q‖f ‖p‖g‖(q,∞) (235)

holds only if 1< p,q, r < ∞ andp−1 + q−1 = 1+ r−1. Thus, there is no hope of modi-
fying (233).
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To circumvent such a difficulty, we will decompose the kernelΘ in two parties
Θ1 andΘ2 defined by their Fourier transforms as

Θ̂1(ξ) =: |ξ |e−|ξ |2/2 (236)

and

Θ̂2(ξ) =: e−|ξ |2/2, (237)

in such a way that

|ξ |exp
[−s|ξ |2]= 1√

s
Θ̂
(√

sξ
)= 1√

s
Θ̂1
(√

sξ
)
Θ̂2
(√

sξ
)
. (238)

With this decomposition, we can write, by taking the inverse Fourier transform
(p andq being conjugate exponents)∣∣〈B(f,g)(t),χ

〉∣∣
�
∫ t

0

∣∣∣∣〈s−2Θ1

( ·√
s

)
∗ χ,

(
1√
s

)3

Θ2

( ·√
s

)
∗ fg(t − s)

〉∣∣∣∣ds

�
∫ t

0

∥∥∥∥( 1√
s

)3

Θ2

( ·√
s

)
∗ fg(t − s)

∥∥∥∥
q

∥∥∥∥s−2Θ1

( ·√
s

)
∗ χ

∥∥∥∥
p

ds (239)

and Young’s generalized inequality (3/2< q < ∞, q−1 + 1 = α−1 + 2/3)∥∥∥∥( 1√
s

)3

Θ2

( ·√
s

)
∗ fg(t − s)

∥∥∥∥
q

�
∥∥∥∥( 1√

s

)3

Θ2

( ·√
s

)∥∥∥∥
α

∥∥fg(t − s)
∥∥

(3/2,∞)

� s−3/2(2/3−1/q)
∥∥fg(t − s)

∥∥
(3/2,∞)

(240)

allows to conclude∣∣〈B(f,g)(t),χ
〉∣∣

�
(

sup
0<t<T

∥∥fg(t)
∥∥

(3/2,∞)

)∫ t

0

‖s−2Θ1(
·√
s
) ∗ χ‖p

s
3
2 (2/3−1/q)

ds

� 2
(

sup
0<t<T

∥∥f (t)
∥∥

(3,∞)

)(
sup

0<t<T

∥∥g(t)
∥∥

(3,∞)

)∫ ∞

0

‖ 1
u3 Θ1(

·
u
) ∗ χ‖p

u1−3/q

du

u

�
(

sup
0<t<T

∥∥f (t)
∥∥

(3,∞)

)(
sup

0<t<T

∥∥g(t)
∥∥

(3,∞)

)
‖χ‖

Ḃ
1−3/q,1
p

. (241)

In order to make use of Proposition 10 in the proof of Theorem 13 we need a classical
result (see [10]).
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LEMMA 24. The following embedding are continuous: Ḃ
3/q−1,∞
q ↪→ L(3,∞) for any

0< q < 3 andL(3,∞) ↪→ Ḃ
3/q−1,∞
q for any3< q < ∞.

Without losing generality, let us prove this lemma only whenq = 2. In order to do this,
we make use of the characterization of Besov and Lorentz spaces given by the interpolation
theory as stated in (115) (see [10])(

L2,L4)
(2/3,∞)

= L(3,∞) (242)

and (
Ḃ

0,1
2 , Ḃ

3/4,1
2

)
(2/3,∞)

= Ḃ
1/2,∞
2 . (243)

Now, as

Ḃ
0,1
2 ↪→ L2 (244)

and

Ḃ
3/4,1
2 ↪→ Ḃ

0,1
4 ↪→ L4, (245)

we get the required result

Ḃ
1/2,∞
2 ↪→ L(3,∞). (246)

Proposition 9 is proved and Theorem 13 follows (see [166]).

6. Self-similar solutions

The viscous flows for which the profiles of the velocity field at different times are invariant
under a scaling of variables are called self-similar. More precisely, we are talking about
solutions to the Navier–Stokes equations

∂v

∂t
− ν�v = −(v · ∇)v − ∇p,

∇ · v = 0,

v(0) = v0

(247)

such that

v(t, x) = λ(t)V
(
λ(t)x

)
, p(t, x) = λ2(t)P

(
λ(t)x

)
, (248)

λ(t) being a function of time,P(x) a function ofx andV (x) a divergence-free vector field.
Two possibilities arise in what follows.
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DEFINITION 10 (Backward). A backward self-similar solution is a solution of the
form (248), whereλ(t) = 1/

√
2a(T − t), a > 0, T > 0 and t < T . As such,V (x) and

P(x) solve the system

−ν�V + aV + a(x · ∇)V + (V · ∇)V + ∇P = 0,

∇ · V = 0.
(249)

DEFINITION 11 (Forward). A forward self-similar solution is a solution of the form (248),
whereλ(t) = 1/

√
2a(T + t), a > 0, T > 0 andt > −T . As such,V (x) andP(x) solve

the system

−ν�V − aV − a(x · ∇)V + (V · ∇)V + ∇P = 0,

∇ · V = 0.
(250)

6.1. Backward: Singular

The motivation for studying backward self-similar solutions is that, if they exist, they
would possess a singularity whent = T ; indeed limt↗T ‖∇v(t)‖2 = ∞. In 1933, Leray
remarked that if a weak solutionv becomes “turbulent” at a timeT , then the quantity
u(t) = supx∈R3

√
v · v has to blow-up like 1√

2a(T−t )
when t tends toT . Furthermore, he

suggested, without proving their existence, to look for backward self-similar solutions. His
conclusion was the following [148]:

[. . .] unfortunately I was not able to give an example of such a singularity[. . .]. If I had succeeded
in constructing a solution to the Navier equations that becomes irregular, I would have the right
to claim that turbulent solutions not simply reducing to regular ones do exist. But if this position
were wrong, the notion of turbulent solution, that for the study of viscous fluids will not play a key
role any more, would not lose interest: there have to exist some problems of Mathematical Physics
such that the physical causes of regularity arenot sufficient to justify the hypothesis introduced
when the equations are derived; to these problems we can apply similar considerations of the ones
advocated so far.

The first proof of the nonexistence of backward self-similar solutions sufficiently de-
creasing at infinity seems to have been given by a physicist at the beginning of the 1970s in
a somewhat esoteric paper, written by Rosen[203]. Another argument for the nonexistence
of nontrivial solutions to the system (249) was given by Foias and Temam in [81].

But the mathematical proof for the nonexistence of backward self-similar solutions as
imagined by Leray was available in functional spaces only later, in 1996, thanks to the
works of the Czech school of J. Nečas.

In a paper published in the French Academy “Comptes Rendus” [179] – the last one
to be presented by Leray (1906–1998) – Nečas, Růžička and Šverák announced that any
weak solutionV to the Navier–Stokes equations (249) belonging to the spaceL3 ∩ W

1,2
loc

reduces to the zero solution. The proof of this remarkable statement [180] is based on
asymptotic estimates at infinity (in the Caffarelli–Kohn–Nirenberg sense) for the functions
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V andP as well as for their derivatives, and on the maximum principle for the function
Π(x) = 1

2|V (x)|2+P(x)+ax ·V (x) on a bounded domain ofR3. A different approach to
obtain the same result, without using the Caffarelli–Kohn–Nirenberg theory, but under the
more restrictive conditionV ∈ W1,2 was proposed afterwards by Málek, Nečas, Pokorný
and Schonbek [155] (see also [170] for a generalization of the method to the proof of
nonexistence of pseudo self-similar solutions).

Now, if we impose that the norms ofv that appear naturally in the energy equality
derived from (247) are finite, we get the estimates

∫
R3 |V |2 < ∞ and

∫
R3 |∇V |2 < ∞, i.e.,

V ∈ W1,2 which impliesV ∈ L3, by Sobolev embedding. But if, on the contrary, we only
impose that the local version of the energy equality is finite, in other wordsV ∈ W

1,2
loc ,

we get some conditions that do not implyV ∈ L3. This case, left open in [155,180], was
solved by Tsai and gave origin to the following theorem [227,146]:

THEOREM 14. Any weak backward self-similar solutionV to the Navier–Stokes equa-
tions (249)belonging either to the spaceLq , 3 < q < ∞ or to W

1,2
loc reduces to the zero

solution.

6.2. Forward: Regular or singular

As we will see in this section, the situation is more favorable in the case of mild forward
self-similar solutions. In fact, since the pioneering paper of Giga and Miyakawa [107], we
know of the existence of many mild forward self-similar solutions of the type (248) with
λ(t) = 1/

√
t . These solutions cannot be of finite energy. In fact, if we consider the inner

product betweenV and the equation (250) and integrate by parts in the whole space, we
get, if V is sufficiently decreasing at infinity∫

R3
|∇V |2 + a

∫
R3

|V |2 = 0. (251)

Finally, this equality results in the conclusion thatV = 0, in particular whenV ∈ W1,2.
(It is important to stress here that such a conclusion is not true for backward self-similar
solutions because of the difference of signs in (249) and (250).)

This is why Giga and Miyakawa suggested, as an alternative to Sobolev spaces, to
consider the Morrey–Campanato ones. Theysucceeded in proving the existence and the
uniqueness of mild forward self-similar solutions to the Navier–Stokes equations written
in terms of the vorticity as unknown, without applying their method to the Navier–Stokes
equations in terms of the velocity. Four years later, Federbush [78,79] considered the
super-critical Morrey–Campanato spacesṀ

q

2 , 3 < q < ∞, for these equations. The crit-
ical spaceṀ3

2 was treated shortly after by Taylor [216] who, surprisingly, did not take
advantage of this space which contains homogeneous functions of degree−1, to get the
existence of self-similar solutions as shown in [34].

As pointed out in the previous section, a remarkable property of the Besov spaces is
that they contain homogeneous functions of degree−1 among their elements, such as,
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e.g.,|x|−1. This is a crucial point if we look for solutions to the Navier–Stokes equations
which satisfy the scaling property

v(t, x) = vλ(t, x) = λv
(
λ2t, λx

) ∀λ > 0 (252)

or, equivalently, takingλ2t = 1, such that

v(t, x) = 1√
t
V

(
x√
t

)
. (253)

In fact, whenever they exist, these particular (a = 1/2 andT = 0) forward self-similar
solutionsv(t, x) are such that their initial valuev(0, x) is a homogeneous function of
degree−1.

We will show here how to obtain, by using a generalization of Kato’s celebrated The-
orem 3, the existence of mild forward self-similar solutionsv(t, x) with initial data v0
homogeneous of degree−1, divergence-free and sufficiently small in a Besov space.
In [34,35,44,45], we showed how to construct mild forward self-similar solutions for the
Navier–Stokes equations (247), by using Besov spaces. In particular, the existence of reg-
ular forward self-similar solutions of the form1√

t
V ( x√

t
) with V ∈ Lq and 3< q < ∞

is contained as a corollary in [34]. The main idea of the aforementioned papers is to
study the Navier–Stokes equations by the fixed point algorithm in a critical space contain-
ing homogeneous functions of degree−1. Furthermore, as noted by Planchon [186], the
equivalence between the integral mild equation and the elliptic problem (250) is completely
justified.

The result we are talking about is the following theorem.

THEOREM 15. Let 3 < q < ∞, andα = 1 − 3/q be fixed. There exists a constantδq > 0
such that for any initial datav0 ∈ Ḃ

−α,∞
q , homogeneous of degree−1, ∇ · v0 = 0 in the

sense of distributions and such that

‖v0‖Ḃ
−α,∞
q

< δq, (254)

then there exists a global mild forward self-similar solutionv(t, x) to the Navier–Stokes
equations such that

v(t, x) = 1√
t
V

(
x√
t

)
(255)

whereV (x) is a divergence-free function belonging toḂ
−α,∞
q ∩ Lq .

The proof of these results follows by a simple modification of Theorem 3, once we recall
that it is always possible to ensure the uniqueness of a mild solutionv(t, x) in a critical
space, if the norm of the solutionv(t, x) in such a space is smaller than a given constant (see
Section 5.3). In fact, suppose thatv(t, x) solves Navier–Stokes with a datumv0 ∈ Ḃ

−α,∞
q
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such thatv0 = λv0(λx) ∀λ > 0, then the corresponding solutionv(t, x), whose uniqueness
is ensured if sup0<t<∞ tα/2‖v(t, x)‖q � C, has to coincide withλv(λ2t, λx) ∀λ > 0 for
the latter inequality is invariant under the same self-similar scaling.

Since 1995, Barraza has suggested replacing the Besov spaces with the Lorentz ones
L(3,∞) (see also Kozono and Yamazaki’s results [131,133,236]), always with the aim of
proving the existence of forward self-similar solutions [4], but he did not achieve the bi-
continuity of the bilinear operator in this space. This result was proven later by Meyer (see
Proposition 9), and was applied, not only to obtain the uniqueness of Kato’s mild solu-
tions (Theorem 13), but also to prove the existence of forward self-similar solutions. More
precisely:

THEOREM 16. There exists a constantδ > 0 such that for any initial datav0 ∈ L(3,∞),
homogeneous of degree−1, ∇ · v0 = 0 in the sense of distributions and such that

‖v0‖L(3,∞) < δ, (256)

then there exists a global mild forward self-similar solutionv(t, x) to the Navier–Stokes
equations such that

v(t, x) = 1√
t
V

(
x√
t

)
, (257)

whereV (x) is a divergence-free function belonging toL(3,∞).

Once again, the proof of this theorem is trivial if we recall the bicontinuity of the bilinear
termB(f,g)(t) in C([0, T );L(3,∞)) [166] (see Proposition 9). This result shows that there
is no need for Fourier transform or Besov spaces to prove the existence of self-similar
solutions for Navier–Stokes.

As we have already pointed out, Le Jan and Sznitman [137,138] gave an even simpler ad
hoc setting to prove such a result. The space they introduced is defined, however, by means
of a Fourier transform condition. More exactly, following the notations of Section 2.5.3,

ψ ∈PM2 if and only if ψ̂ ∈ L1
loc and‖ψ‖PM2 = sup

ξ

|ξ |2∣∣ψ̂(ξ)
∣∣< ∞.

(258)

Now, according to the simplified version of Le Jan and Sznitman’s result contained in [48],
we have:

THEOREM 17. The bilinear operatorB(f,g) is bicontinuous fromL∞
t (PM2) ×

L∞
t (PM2) into L∞

t (PM2). Therefore there exists a unique global mild solution to the
Navier–Stokes equations inL∞

t (PM2) provided the initial data is divergence-free and
sufficiently small inPM2.

Note that the authors made use of some probabilistic tools in [137,138] requiring rather
subtle techniques to obtain the continuity of the bilinear operator. More precisely, the main
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idea contained in these papers is to study the non linear integral equation verified by the
Fourier transform of the Laplacian of the velocity vector field associated with the “deter-
ministic equations” of Navier–Stokes. This integral representation involves a Markovian
kernelKξ , associated to the branching process,called stochastic cascades, in which each
particle located atξ �= 0, after an exponential holding time of parameter|ξ |2, with equal
probability either dies out or gives birth to two descendants, distributed according toKξ .
By taking the inverse Fourier transform one can thus obtain a solution to the Navier–Stokes
equations. . . arising from a sequence of cascades!

However, as pointed out in [48], in the particular case of the pseudo-measures, Theo-
rem 17 is a straightforward consequence of the fixed point algorithm and it is enough to
show why the bilinear operator is bicontinuous. We work in Fourier space, witĥf andĝ

instead off andg. A standard argument (rotational invariance and homogeneity) shows
that [214,215]

1

|ξ |2 ∗ 1

|ξ |2 � C

|ξ | . (259)

Thus

B̂(f, g)(t, ξ) =
∫ t

0
|ξ |e−(t−s)|ξ |2f̂ (s) ∗ ĝ(s)ds, (260)

and, upon using (259),

sup
t,ξ

(|ξ |2∣∣B̂(t)
∣∣)� sup

t,ξ

(|ξ |2∣∣f̂ (t)
∣∣)sup

t,ξ

(|ξ |2∣∣ĝ(t)
∣∣)sup

t,ξ

∫ t

0
|ξ |2e−(t−s)|ξ |2 ds.

(261)

This last integral is in turn less than unity, which concludes the proof once the fixed
point algorithm is recalled.

Finally, the norm of the spacePM2 being critical in the sense of Definition 9, the
following result can be easily deduced from the previous estimate.

THEOREM 18. There exists a constantδ > 0 such that for any initial datav0 ∈ PM2,
homogeneous of degree−1, ∇ · v0 = 0 in the sense of distributions and such that

‖v0‖PM2 < δ, (262)

then there exists a global mild forward self-similar solutionv(t, x) to the Navier–Stokes
equations such that

v(t, x) = 1√
t
V

(
x√
t

)
, (263)

whereV (x) is a divergence-free function belonging toPM2.
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REMARK. As far as backward self-similar solutions are concerned, we can exclude the
existence of singularities for the Navier–Stokes equations simply by using Nečas, Růžička
and Šverák and Tsai’s results. However, singular forward self-similar solutions may exist.
More precisely, there is a substantial difference between the self-similar solutions con-
structed in Theorem 15 and those constructed in Theorems 16 and 18. Both have a sin-
gularity at timet = 0 (of the type∼ 1/|x|), but the solution constructed in Theorem 15
becomesinstantaneouslysmooth fort > 0, whereas this property cannot be ensured a pri-
ori for the other two families of self-similar solutions. The reason is the following. Even
if they are both issued from the fixed point algorithm, the solutions in Theorem 15, and in
Theorems 16 and 18 are constructed in a very different way. In the first case, in order to
overcome the difficulty (and sometimes the impossibility) of proving the continuity of the
bilinear estimate in the so-called critical spaces, we had to make use of Kato’s celebrated
idea of consideringtwo normsat the same time, the so-called natural norm and the auxil-
iary regularizing norm. As such, Kato’s approach imposes a priori a regularization effect
on the solutions we look for. In other words, they are considered as fluctuations around
the solution of the heat equation with the same initial data. In the case of the self-similar
solution arising from Theorem 15, this regularity condition is imposed by the Lebesgue
norm. More explicitly, not only does the divergence-free functionV (x) belong to the Besov
spaceḂ−α,∞

q , but also toLq , which is not a priori the case for the solutions in Theorems
16 and 18.

For people who believe in blow-up and singularities, this a priori condition coming from
the two normsapproach is indeed very strong. In other words, at variance with Leray’s
approach, Kato’s algorithm does not seem to provide a framework for studying a priori
singular solutions. However, as we have seen in the previous pages, two exceptions ex-
ist, i.e., two critical spaces where Kato’s method applies with justone norm: the Lorentz
spaceL(3,∞) (considered independently by Kozono and Yamazaki [131,133,236], Barraza
[4,5], Meyer [166]) and the pseudo-measure space of Le Jan and Sznitman [137,138]. The
approach with onlyone normgives the existence of a solution in a larger space which, in
our case, contains genuinely singular solutions that are not smoothened by the action of
the nonlinear semigroup associated.

The importance of this remark will be clear in Section 6.4, where we will construct
explicit forward self-similar solutions, singular for any timet � 0, and we will suggest
how to obtain loss of smoothness for solutions with large data.

If the debate concerning singularities is still open, as far as Besov spaces and harmonic
analysis tools are concerned, it is clear that they have nothing to do with the existence
(Theorem 16) nor the nonexistence (Theorem 14) of self-similar solutions.

6.3. Asymptotic behavior

Finding self-similar solutions is important because of their possible connection with
attractor sets. In other words, they are related to the asymptotic behavior of global solu-
tions of the Navier–Stokes equations. A heuristic argument is the following: letv(t, x)

be a global solution to the Navier–Stokes system, then, for anyλ > 0, the function
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vλ(t, x) =: λv(λ2t, λx) is also a solution to the same system. Now, if in a “certain sense”
the limit limλ→∞ vλ(t, x) =: u(t, x) exists, then it is easy to see thatu(t, x) is a self-similar
solution and that limt→∞

√
tv(t,

√
tx) = u(1, x). In [186,188,189],Planchon gave the pre-

cise mathematical frame to explain the previous heuristic argument (see also Meyer [164],
Barraza [5] and, for more general nonlinear equations, Karch [113]).

As we suggested among the open problems in [34], the existence of self-similar solutions
also evokes the study of exact solutions for Navier–Stokes. In the following section, we
will describe the result of Tian and Xin, who gave an explicit one-parameter family of self-
similar solutions, singular in a single point [221], and we will show how to interpret their
result as a loss of smoothness for large data.

We would like to mention here the papers of Okamoto [181,182] that contain a system-
atic study of exact solutions of the systems (249) and (250). These results merit attention,
especially since the resolution of these elliptic equations seems very difficult. One could
image to apply these results to the study of mild solutions in the subcritical case, for which
neither the existence nor the uniqueness is known (see also [37]) unless some restriction
are required (see [32,33,145]).

More precisely, let us suppose that we can prove the existence of a nontrivial self-
similar solutionv(t, x) = 1√

t
V ( x√

t
) – in other words a solutionV of (250) – withV ∈ Lp

and 1� p < 3. Then the Cauchy problem associated to the zero initial data would
allow two different solutions, viz.v and 0, both belonging toC([0, T );Lp). In fact,
limt→0 ‖ 1√

t
V ( x√

t
)‖p = 0, provided 1� p < 3. And the Cauchy problem would be ill-

posed inC([0, T );Lp), 1 � p < 3 in the same way that it is ill posed for a semilinear
partial differential equation studied in 1985 by Haraux and Weissler [108].

This point of view should confirm the conjecture formulated by Kato [116], according
to which the Cauchy problem is ill posed in the sense of Hadamard when 1� p < 3. In the
casep = 2, for example, we will not obtain a unique, global, regular and stable solution
and the scenario imagined by Leray would bepossible. We will come back to this question
in Section 7.2.

Finally, let us quote the book of Giga and Giga [102] “Nonlinear Partial Differential
Equations – Asymptotic Behavior of Solutions and Self-Similar Solutions”, whose English
translation should be available soon, that contains one of the most comprehensive and self-
contained state of the art of the results available in this direction for the Navier–Stokes and
other partial differential equations (e.g.,the porous medium, the nonlinear Schrödinger and
the KdV equations).

6.4. Loss of smoothness for large data?

As we recalled in the Introduction, a question intimately related to the uniqueness problem
is the regularity of the solutions to the Navier–Stokes equations. Several possibilities can be
conjectured. One may imagine that blow-up of initially regular solutions never happens, or
that it becomes more likely as the initial norm increases, or that there is blow-up, but only
on a very thin set of probability zero. Or it is “possible that singular solutions exist but are
unstable and therefore difficult to construct analytically and impossible to detect numer-
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ically [. . .], which would contradict the almost universal assumption that these equations
are globally regular”[122].

As we have seen in Section 3, when using a fixed point approach, existence and unique-
ness of global solutions areguaranteed only under restrictive assumptions on the initial
data, that is required to be small in some sense, i.e., in some functional space. In Section 4
we pointed out that fast oscillations are sufficient to make the fixed point scheme work,
even if the norm in the corresponding function space of the initial data is arbitrarily large
(in fact, a different auxiliary norm turns out to be small). Here we would like to suggest
how some particular data, arbitrarily large (notoscillating) could give rise to singular so-
lutions. It is extremely unpleasant that we have no criteria to decide whether for arbitrarily
large data the corresponding solution is regular or singular.

As observed by Heywood in [110], in principle “it is easy to construct a singular solution
of the NS equations that is driven by a singular force. One simply constructs a solenoidal
vector fieldu that begins smoothly and evolves to develop a singularity, and then defines
the force to be the residual”.

Recently, Tian and Xin [221] found explicitformulas for a one-parameter family of
stationary “solutions” of the three-dimensional Navier–Stokes system (1) “withφ ≡ 0”
which are regular except at a given point. These explicit “solutions” agree with those pre-
viously obtained by Landau for special values of the parameter (see [135,136]). Due to the
translation invariance of the Navier–Stokes system, one can assume that the singular point
corresponds to the origin. More exactly, the main theorem from [221] reads as follows.

All solutions to the Navier–Stokes system(with φ ≡ 0) u(x) = (u1(x), u2(x), u3(x)) and
p = p(x) which are steady, symmetric aboutx1-axis, homogeneous of degree−1, regular
except(0,0,0) are given by the following explicit formula:

u1(x) = 2
c|x|2 − 2x1|x| + cx2

1

|x|(c|x| − x1)2 ,

u2(x) = 2
x2(cx1 − |x|)
|x|(c|x|− x1)2

,

u3(x) = 2
x3(cx1 − |x|)
|x|(c|x|− x1)2

,

p(x) = 4
cx1 − |x|

|x|(c|x|− x1)2 ,

(264)

where|x| =
√

x2
1 + x2

2 + x2
3 andc is an arbitrary constant such that|c| > 1.

It is clear that these stationary “solutions” are self-similar, because they do not depend
on time and they are homogeneous of degree−1 in the space variable. Moreover, there is
no hope of describing the “solutions” given by(264) in Leray’s theory, because they are
not globally of finite energy; in other words, they do not belong toL2. However, they do
belong toL2

loc and this is at least enough to allow us to give a (distributional) meaning to the
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nonlinear term(v · ∇)v = ∇ · (v ⊗ v). Finally, as pointed out at the end of Section 6.2, the
“solutions” discovered by Tian and Xin cannot be analyzed by Kato’s two norms method
either, because they are global but not smooth. More precisely, they are singular at the
origin with a singularity of the kind∼ 1/|x| for all time.

There are at least two ad hoc frameworks for studying such singularity within the fixed
point scheme and without using the two norms approach. We are thinking of the Lorentz
spaceL(3,∞) ([42]) and the pseudo-measure spacePM2 ([40]), because they both contain
singularities of the type∼ 1/|x|. However, the latter space has the advantage that not only
the definition of its norm is very elementary and simplifies the calculations, it will also
allow us to treat singular (Delta type) external force, that precisely arise from Tian and
Xin’s “solutions”.

More exactly, by straightforward calculations performed in [40], one can check that,
indeed,(u1(x), u2(x), u3(x)) and p(x) given by (264) satisfy the Navier–Stokes equa-
tions with φ ≡ 0 in the pointwise sensefor every x ∈ R3 \ {(0,0,0)}. On the other
hand, if one treats(u(x),p(x)) as adistributional or generalizedsolution to the Navier–
Stokes equations in the wholeR3, they correspond to the very singular external force
φ = (bδ0,0,0), whereδ0 stands for the Dirac delta and the parameterb depends onc
and lim|c|→∞ b(c) = 0. As such, ifc is small enough, the existence of these solutions can
be ensured as well via the fixed point algorithm as in [42,40].

The stationary solutions defined in (264) are singular with singularity of the kind
O(1/|x|) as |x| → 0. This is a critical singularity, because as it was shown by Choe and
Kim [65], every pointwise stationary solution to the Navier–Stokes system withF ≡ 0
in BR \ {0} = {x ∈ R3 : 0 < |x| < R} satisfyingu(x) = o(1/|x|) as |x| → 0 is also a so-
lution in the sense of distributions in the wholeBR . Moreover, it is shown in [65] that
under the additional assumptionu ∈ Lq(BR) for someq > 3, then the stationary solution
u(x) is smooth in the whole ballBR . In other words, ifu(x) = o(1/|x|) as |x| → 0 and
u ∈ Lq(BR) for someq > 3, then the singularity at the origin is removable.

We are now ready to state our remark about a possible loss of regularity of solutions
with large data (see [40]).

REMARK. Let us consider the Navier–Stokes equations with external forceφ ≡ 0. Then,
if one defines the functionsuε(x,0) = εu(x), whereu(x) is the (divergence-free, homo-
geneous of degree−1) function given by (264) as the initial data, then for smallε the
system has a global regular (self-similar) solution which is even more regular than a priori
expected and forε = 1 the system has a singular “solution” for any time. The fact that, for
smallε and external forceφ ≡ 0 for everyx ∈ R3, the solution is smooth follows from a
parabolic regularization effect analyzed in [40]. On the other hand, ifε > 1 nothing can be
said in general and the corresponding solution can be regular or singular.

However, after a more careful analysis, onerealizes that this possible loss of smooth-
ness result does not apply in the “distributional” sense, but, as we explained before, only
“pointwise” for everyx ∈ R3 \ {(0,0,0)}. On the other hand, as explained in a forthcom-
ing paper [18], this loss of smoothness for large data holds in the distributional sense for a
model equation of gravitating particles (for which, moreover, blow-up is known).
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7. Stability

As we have seen in the previous sections, when using a fixed point approach, existence
and uniqueness of global solutions are guaranteed only under restrictive assumptions on
the initial data, that is required to be small in some sense, i.e., in some functional space.
In Section 4 we pointed out that fast oscillations are sufficient to make the fixed point
scheme work, even if the norm in the corresponding function space of the initial data is
arbitrarily large (in fact, a different auxiliary norm turns out to be small). On the other
hand, in Section 6 we suggested how arbitrarily large data (not oscillating) could give rise
to irregular solutions: in general, we do not know whether for arbitrarily large data the
corresponding solution is regular or singular.

For the Navier–Stokes equations one might consider the entire question irrelevant, for
the solution is unique and regular for small initial data and no viscous flow can be consid-
ered incompressible if the initial data are too large. The problem here is different: the set
(δ > 0) of initial data for which one can ensure the existence and the uniqueness (‖v0‖ < δ)
is not known precisely and could be too small, and the result meaningless from a physical
point of view. In other words, the initial data as well as the unique corresponding solution
would be “physically” zero! The “physical” role played by the smallness assumption on
the initial data will be dealt with in this section. More precisely, we will make the link
between this property, the stability of the corresponding global solution and the existence
of Lyapunov functions.

First of all, let us note that the smallness condition is not absolute, but relative to the
viscosityν and, if we do not rescale the variables as we did in Section 3.2, this condition
is written‖v0‖/ν < δ. Now, if we interpret‖v0‖ as the characteristic velocity of the prob-
lem and we suppose (in the whole spaceR3 or T3) the characteristic length is normalized
to unity, then the quotientR =: ‖v0‖/ν can be interpreted as a Reynolds number associ-
ated with the problem. More precisely, the complexity of the Navier–Stokes equations is
essentially due to the competition between the nonlinear convection termρ(v · ∇)v, and
the linear term of viscous diffusion,µ�v. The order of magnitude of the quotient between
these terms (dimension equation)

|ρ(v · ∇)v|
|µ�v| ≡ ρ

µ

V 2/L

V/L2 = LV

ν
=: R (265)

defines a dimensionless quantityR, called Reynolds number, that allows a comparison of
the inertial forces and the viscosity ones.

Thus, the condition giving the existence and uniqueness of Kato’s (global and regular)
solution is nothing but by the smallness of a dimensionless Reynolds number associated
with the problem. At this point it would be tempting to prove that for Reynolds numbers
that are too large, the solution does not exist, or is not regular, or not unique or simply
not stable. This point of view would be confirmed by the image of developed turbulence
formulated in 1944 by Landau [136]:

Yet not every solution of the equations of motion, even if exact, can actually occur in Nature. The
flows that occur in Nature must not only obey theequations of fluid dynamics, but also be stable.
For the flow to be stable it is necessary that small perturbations, if they arise, should decrease with
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time. If, on the contrary, the small perturbations which inevitably occur in the flow tend to increase
with time, then the flow is absolutely unstable. Such a flow unstable with respect to infinitely small
perturbations cannot exist.

The criteria to find the critical Reynolds numbers above which solutions of the Navier–
Stokes could not necessarily be stable under small perturbations are a matter for the theory
of hydrodynamics stability and we refer the reader to [36,210] for a more comprehensive
discussion and accurate bibliography on the subject. In the following pages we would like
to concentrate only on the results that are closely related to the approach for the Navier–
Stokes equations introduced in [34].

Let us start with theL3-valued mild solutions. First of all, we should note that the ap-
plication that associates with the initial valuev0 ∈ L3 the corresponding solutionv(t, x) ∈
C([0, T );L3) constructed, as in Kato’s theory, by the fixed point theory, is analytical in
a neighborhood of zero, as a functional acting onL3 with values inC([0, T );L3), as re-
called for instance in [3]. Accordingly, the stability of mild solutions follows immediately
because, by virtue of the uniqueness theorem (Section 5), any mild solution arises from
the fixed point algorithm. As we will see in Section 7.2, this does not hold the case for the
subcritical case 2� p < 3 [41,165].

Generalizing previous stability results inLp (see [195,228]), Kawanago proceeds in the
opposite direction [120,121]. First, he obtains a stability estimate, then makes use of it to
establish a uniqueness theorem for mild solution. His result concerns global solutionsv ∈
C([0,∞);L3) and reads as follows. For anyv0 ∈ L3, there exist two constantsδ(v0) > 0
andC > 0 such that, if‖v0 − ṽ0‖3 < δ, thenṽ ∈ C([0,∞);L3) and

∥∥v(t) − ṽ(t)
∥∥

3 �
∥∥v(0) − ṽ(0)

∥∥
3 exp

{
C

∫ t

0

∥∥v(s)
∥∥5

5 ds

}
(266)

for any t > 0. Finally, Barraza obtains some stability and uniqueness results for solutions
in L(3,∞) [5]. But, as we have already remarked, the theorem by Meyer in the same Lorentz
space [166] allows a considerable simplification of these results.

As pointed out by Yudovich in [239], the choice of the norm for proving the stability of
an infinite-dimensional system (e.g., a viscous fluid) is crucial because the Banach norms
are not necessarily equivalent therein. To bemore explicit, let us recall the simple example
of the linear Cauchy problem [85,239]

∂v

∂t
= x

∂v

∂x
,

v(0, x) = ϕ(x),

(267)

whose unique (for an arbitrary smooth initial functionϕ) explicit solution v(t, x) =
ϕ(x exp(t)) is exponentially asymptotically stable inLp(R) for 1 � p < ∞, stable but not
asymptotically stable inL∞(R) or W1,1(R) and exponentially unstable in anyWk,p(R)

for k > 1, p � 1 or k = 1, p > 1.
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7.1. Lyapunov functions

A sufficient condition for a solution to be stable for a given norm is that‖v(t, x)− ṽ(t, x)‖,
the norm of the difference between the solutionv and a perturbatioñv, is a decreasing-in-
time function. This leads to the following definition.

DEFINITION 12. Letv be a solution of the Navier–Stokes equations, then any decreasing-
in-time functionL(v)(t) is called a Lyapunov function associated tov.

The most well-known example is certainly provided by energy

E(v)(t) = 1

2

∥∥v(t)
∥∥2

2, (268)

because, a calculation similar to the one performed in (251), gives

d

dt
E(t) = −ν

∥∥∇v(t)
∥∥2

2 < 0. (269)

This result can easily be generalized in the homogeneous Sobolev spacesḢ s , for
0 � s � 1. For example, in the cases = 1

2, by means of Hölder and Sobolev inequalities
in R3, we get ([117], p. 258)∥∥P(v · ∇)v

∥∥
2 � C‖v‖6‖∇v‖3 � C‖v‖Ḣ1‖v‖Ḣ3/2 . (270)

From this estimate we easily deduce the decreasing property for the functionv = v(t) that
reads as follows

d

dt

∥∥v(t)
∥∥2

Ḣ1/2 � −2
∥∥v(t)

∥∥2
Ḣ3/2

(
ν − C

∥∥v(t)
∥∥

Ḣ1/2

)
(271)

and thus, if the Reynolds number‖v0‖Ḣ1/2/ν is sufficiently small, we get a Lyapunov func-
tion associated with the norṁH 1/2. As already stated in Section 4.2, a similar argument
allows us to obtain for thėH 1 norm:

d

dt

∥∥v(t)
∥∥2

Ḣ1 � −2
∥∥v(t)

∥∥2
Ḣ2

(
ν − C

∥∥v(t)
∥∥

Ḣ1/2

)
. (272)

This estimate shows that the smallness of the number‖v0‖Ḣ1/2/ν also implies the decrease
in time of‖v‖Ḣ1. Now, the Sobolev spaceṡHs , s > 1/2 are super-critical. In other words,
as far as the scaling is concerned, they have the same invariance as the Lebesgue spacesLp

if p > 3. This means that one can prove the existence of a local mild solution for arbitrary
initial data (Theorem 1). In the case oḟH 1, this solution turns out to be global, provided
the quantity‖v0‖Ḣ1/2/ν is sufficiently small, thanks to the uniform estimate∥∥v(t)

∥∥
Ḣ1 � ‖v0‖Ḣ1 ∀t > 0, (273)
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that is derived directly from (272).
In other words, this property establishes a direct link between the Lyapunov functions,

the existence of global regular solutions in an energy space and the oscillatory behavior of
the corresponding initial data.

In a paper that seems to have been completely ignored [115], Kato, after treating the clas-
sical casesḢ s , 0� s � 1, derives new Lyapunov functions for the Navier–Stokes equations
not necessarily arising from an energy norm. More precisely: there existsδ > 0 such that
if the Reynolds numberR3(v0) = ‖v0‖3/ν < δ, then the quantityR3(v)(t) = ‖v(t)‖3/ν

is a Lyapunov function associated withv. The importance of this result comes from its
connection with the stability theory. In fact, as explained by Joseph [112]:

It is sometimes possible to find positive definite functionals of the disturbance of a basic flow,
other than energy, which decrease on the solutions when the viscosity is larger than a critical value.
Such functionals, which may be called generalized energy functionals of the Lyapunov type, are
of interest because they can lead to a larger interval of viscosities on which global stability of the
basic flow can be guaranteed.

As we proved in [49,50], Kato’s result also applies to other functional norms, in partic-
ular the Besov ones. See also [2,95,96,145] for related results in this direction. Not only
do these properties show the stability for Navier–Stokes in very general functional frames
(and imply in particular that set of global regular solutions is open), but as we have noted
above, they could shed some light on the research of global Navier–Stokes solutions in
supercritical spaces.

7.2. Dependence on the initial data

Before leaving this section, we would like to recall a result obtained by Meyer and an-
nounced at the Conference in honor of Jacques-Louis Lions held in Paris in 1998 [165].
The full proof will appear in detail in [167]. The theorem in question expresses the de-
pendence on the initial data of the solutions to Navier–Stokes in the subcritical case and
could shed some light on the conjecture formulated by Kato in [116], that we recalled in
Section 6.3. The result is the following:

THEOREM 19. There is no application of classC2 that associates a(mild or weak) solu-
tion v(t, x) ∈ C([0, T );Lp), 2� p < 3 to the corresponding initial conditionv0 ∈ Lp .

Note thatp = 2 corresponds to the most interesting case of weak solutions by Leray. In
particular:

1. There is no application of classC2 that associates Leray’s weak solutionv(t, x) ∈
L∞((0, T );L2), to the initial conditionv0 ∈ L2.

2. If a mild solution exists in the subcritical case (2� p < 3), it does not arise from a
fixed point algorithm. On the other hand, as we have seen in Section 7, the application
that associates Kato’s mild solutionv(t, x) ∈ C([0, T );L3) to the initial datav0 ∈ L3

is analytical in a neighborhood of zero as a functional acting onL3 and taking val-
ues inC([0, T );L3). In the subcritical case, the regularity of the flow-map changes
drastically.
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The proof of Theorem 19 is based on a contradiction argument. Briefly stated, it is
assumed that for the initial dataλv0, the solutionvλ(t, x), whose existence is supposed
in Theorem 19, could be written in the formλv(1)(t, x) + λ2v(2)(t, x) + o(λ2), where
little o corresponds to the normL∞([0, T );Lp) andλ → 0. Then, the idea is to evaluate
(by calculations analogous to that performedin Section 3.4.2) the norm of the bilinear
operator that definesv(2)(t, x) in terms ofv0 in order to prove thatv(2)(t, x) cannot belong
to C([0, T );Lp). As usual, the main point will be to evaluate not the “exact” value of the
symbol of the operator, but its “homogeneity scaling”.

This kind of ill-posedness results for solutions arising from the Banach fixed point the-
orem in the case of the Navier–Stokes equations can be easily generalized to the nonlinear
heat equation, the viscous Hamilton–Jacobi equation and the convection–diffusion equa-
tion, as it is illustrated in the paper [41].

Conclusion

Should we conclude from the three examples given in this paper (oscillations, uniqueness
and self-similarity) that real variable methods arealwaysbetter suited for the study of
Navier–Stokes, and that wavelets, paraproducts, Littlewood–Paley decomposition, Besov
spaces and harmonic analysis tools in general have nothing to do with these equations?

In order to analyze this question, we list here a series of bad and good news, that will be
summarized by a prophetic wish.

For the Navier–Stokes equations, there are other examples in which Fourier methods do
not gain against real variable methods. For example, by using Fourier transform in [109],
Heywood was hoping to get a better global estimate for‖∇v(t)‖2, in order to improve the
key inequality analyzed in Section 5.1, Equation (220). However, as he remarks in [110]:

We give Fourier transform estimates for solutions of the Navier–Stokes equations, without using
Sobolev’s inequalities, getting again global existence in two dimensions but only local existence
in three dimensions.[. . .] Unfortunately, because of a dimensional dependence in the evaluation
of a singular integral, the final result is only a local existence theorem in the three-dimensional.
[. . .] This adds another failure to an already long list of failures to prove global existence in the
three-dimensional case, which may reinforce the feeling that singularities really exist.

In practical applications, one never looks for a solution inR3, yet solid bodies (e.g., the
surface of a container), limit the region of space where the flow takes place. However, in the
physically more interesting case when boundaries are present, it is very difficult to general-
ize the methods based on Fourier transform techniques (see [51,68,69,153,154,175,240]),
unless some periodicity conditions are considered, like, e.g., the torusT3 (see [222]).

The situation seems more favorable to Fourier methods in the case of decay ast → ∞
of solutions of the Navier–Stokes equations (see [23–27,95,96,237]). So far, no better tech-
niques than the Fourier splitting introduced by Schonbek and the Hardy spaces considered
by Miyakawa [171–173] are known to study the decay at infinity of solutions to the Navier–
Stokes equations.

Finally, in the case of the Euler equations, there is a rich literature that makes use of
paradifferential tools (see [55,61,229–231]). However, in the case of vortex patches, whose
regularity was proved in 1993 by Chemin using Bony’s paraproduct rule (see [57,61]),
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a much simpler proof that does not make use of the paradifferential machinery was discov-
ered by Bertozzi and Constantin [11,12] and by Serfati [207].

The discussion seems endless, the examples innumerable and it is difficult to conclude.
As announced, we will to do it with a messianic hope of Federbush [79]:

One should be able to do more than we have accomplished so far using wavelets: make a dent
in the question of the existence of global strong solutions, find a theoretical formalism for turbu-
lence[. . .]. Someone ( perhaps smarter than me, perhaps working harder than me, perhaps luckier
than me, perhaps younger than me) should get much further on turbulence and the Navier–Stokes
equations with the ideas in wavelet analysis.
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