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Abstract Let  )(*

2  LH  with )(: 21 RS , i.e.  is the boundary of the unit sphere. Let 

)(su  being a 2 periodic function and  denotes the integral from 0  to 2 in the 

Cauchy-sense. Then for )(: 2  LHu  with )(: 21 RS  and for real   the Fourier 

coefficients   
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enable the definitions of the norms (e.g. [ILi] 11.1.5, [KBr0]) 
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We propose to replace current re-normalization techniques to overcome certain 

convergence issue concerning today’s ground state energy model by a modified (less 

regular) Hilbert space framework than current )(: 2  LH  Hilbert space, based on the 

Hilbert space 

  001 HHH . The orthogonal projection from
01 HH 
 ensures 

consistency with today’s standard 2L model. 

The mathematical framework and the notation are given in [KBr3]. It is built on the (Pseudo-

differential) model operators 
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The Dirichlet integral ),(:),( vuvuD   defines the inner product of the “standard” “energy 

space”. The proposed alternative model of a potential of J. Plemelj ([JPl] §8) in combination 

with the Hilbert transform operator
0S  in the form 
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is applied, to define an alternative inner product to the Dirichlet integral for the infinitesimal 

small quantum world in the form 

 

111 ),(:)),((:),(  vSuSdvduvu E

   

,

   
01)(, HSDvu   . 

 

The generalizations of the model operators 
1, SSo
 lead to the Riesz operators 

kR and the 

Calderón-Zygmund  operator ([GEs] (3.17), (3.35)), given by 
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In general, in the proposed Hilbert space framework with inner product ),( vu   the reverse 

Legendre transformation        

)()( dyddx
x

f
ydgd  


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is no longer valid. Therefore, in general the Hamiltonian and the Lagrangian formalisms are 

no longer equivalent, i.e. while the concept of “energy” of a mass element dm ([JPl] p. 12) in 

the form dm  is a still valid definition in the sense of above, but the concept of “force” is no 

longer be defined in corresponding (quantum mechanics) models for elements of the 

extended domain of the operator  . 
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Notations 

 

Let  )(*

2 LH   with )(: 21 RS , i.e.  is the boundary of the unit sphere. Let )(su  being a 

2 periodic function and  denotes the integral from 0  to 2  in the Cauchy-sense. Then 

for )(: 2  LHu  with )(: 21 RS  and for real   the Fourier coefficients   


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enable the definitions of the norms (see e.g. [ILi] Remark 11.1.5, [KBr0]) 
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There is a natural representation of the Fourier decomposition 
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as Laurent series description in terms of a complex variable, defined on a circle 
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is the space of  2L periodic function in R .  
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From [ILi] (1.2.34) (see also [TGr]) we note the identity with a hyper singular integral equation 

of kernel of Hilbert type 
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This identity is related to the following integral operators ([ILi] (1.2.31)-(1.2.33), [Ili1]) 
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the following properties are valid: 

 

Lemma 

i) The operator H  is skew symmetric in the space )2,0(2 L  (e.g. [DGa], [CRu], [BPe], [FTr] 
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J. Plemelj’s suggestion ([JPl] XV, p. 12, p. 17), see also [JAh], [JNi]) is about a relationship 

between the differential form calculus and its application in physics (e.g. [HCa], [HFl]) and a 

modified representation of the potential in the form 

(*) 
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Plemelj‘s quote:  “Bisher war es üblich, für das Potential die Form (*) zu nehmen. Eine solche 

Einschränkung erweist sich aber als eine derart folgenschwere Einschränkung, dass dadurch 

dem Potentiale der grösste Teil seiner Leistungsfähigkeit hinweg genommen wird. Für 

tiefergehende Untersuchungen erweist sich das Potential nur in der Form (**) verwendbar.“   

J. Plemelj ([JPl]) stated that the standard definition of the normal derivative is (just) not 

useful. He alternatively proposed  dsun
, which he called “current”. The definition requires no 

“existing” boundary value of the derivatives, its defined only by the behavior/regularity of the 

function in its interior domain. With respect to the calculation of a potential this leads to a 

replacement of the concept of a mass density dss)(  by a mass element 
sd defined on an 

infinitely small piece of the boundary. It only requires 

 

s

sd



  with   0  . 

In the plane the “current” with respect to such a potential u is equivalent to the alteration of 

its conjugate potential  uHu  between the infinitesimal small distances of the two end points 

on the boundary. 
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The proposed new “energy” inner product: The Dirichlet integral                         
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The operator 1S is a Calderón-Zygmund integrodifferential operator with symbol ([GEs] 

(3.17), (3.35)), i.e. of the form  
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whereby kR denotes the Riesz operators ([HAb] p. 19, 106, [BPe] example 9.9, 9.10) 
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Remark: We note that the gradient 

k

k

x

  is the prototype of co-variant vector fields and that 

kdx  is the (infinitely small) contra-variant vector field ([ESc1] chapter 1) In case of an infinitely 

small parallel displacement there should be no change to the length of the vector. 

Displacement of coordinate differentials, when moving from 
kkk dxxx   enables the 

definition of a measure ds of the length of an infinitely small “distance” and  ds  a measure of 

the length of a finite small “distance” ([ESc1] chapter VII: “The geodesics of an affine 

connexion”, see also [JPl]). 
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Remark: For corresponding physical models (e.g. Navier-Stokes equations, Maxwell 

equations and Einstein’s field equations) to apply variational calculus in combination with this 

kind of inner product for differential forms the physical science we refer to e.g. [HFl], [ESc], 

[RSe].  

We mention a few model problems/examples: 

 

Prandtl’s airfoil uplift theory (e.g. [LPr], [HSc], [FTr] 4.3), based on the concepts of a “lifting 

line”, “circulations”, ”Newton and Non-Newton fluid”, leads to an integro-differential equation 

in the form 
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With less regularity assumptions to its solution )(yG  this can be reformulated as singular 

integral (fix point) operator equation in the form 

  )()()()( 1 yGcSyyLyG   . 

 

The pressure potential formulation of the Stokes flow ([PCo], [JHe], [HLo],[DSh], [SMo], 

[CRu]) is the Pressure Poisson Equation (PPE) in the form 

       )(     ))(( uufp    resp. a weak form like  )),))((((),( vfuuvpD   for Hv  

It applies in the context of incompressible Navier-Stokes equation 
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in combination with the boundary conditions 
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From [DSh] 1.2.3, 2.2b, we cite the following: 

“…Given the flowu , can the PPE be used to obtain the pressure? Again, at first sight, the 

answer to this question appears to be yes. After all, )( is a Poisson equation for p , which 

should determine it uniquely – in case appropriate boundary conditions are given. The 

problem is: what boundary conditions? Evaluation of )1( at the boundary, with use of )3( ), 

shows that the flow velocity determines the whole gradient of the pressure at the boundary, 

which is too much for )( . Further, if only a portion of these boundary conditions are enforced 

when solving )(  – say, the normal component of ( )1( at the boundary, then how can one be 

sure that the whole of )1( applies at the boundary?” 
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From [HLo] we cite: 

„….. In der vorliegenden Arbeit werde ich zeigen, dass keine Stetigkeitseigenschaften (oder 

auch nur Summierbarkeitseigenschaften) der partiellen Ableitungen (der Cauchy-

Riemannschen Differentialgleichungen) vorausgesetzt zu werden brauchen. Es genügt 

vielmehr, ihre blosse Existenz (und die Gültigkeit der Cauchy-Riemannschen 

Differentialgleichungen) im Bereich anzunehmen.“ 

In [JNi1] a direct proof of an unusual shift theorem for the Stokes flow in the 
1

 norm is 

given. 

 

Heisenberg uncertainty relation ([WHe], [ESc]): It states that the location and momentum 
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([KBr3]) to enable a common, less regular domain of the location and momentum operators, 

which is again a Hilbert space with common eigenpairs. Nevertheless the Heisenberg 

uncertainty relation keeps still valid, when the new domain is projected to the original 

classical or variational domains of x

 and p
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The Schrödinger field equation for the electrons wave functions ),( tx


  reflects in the right 

way the experimental verified relationship between the group velocity and the wave number. 

The wave functions themself do have no physical meaning. But the intensities of fields, as 

e.g. (from Maxwell theory) the energy density and the Poynting vector or (from quantum 

mechanics) the Hamiltonian operator of a free string ([HRo2] (2.10.43)) 
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is divergent (!!) in standard Hilbert space framework. In alignment with the “square concept” 
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models the density of the matter field of electrons. Based on this interpretation the continuity 

equations (which is the Schrödinger equation) is given by 

0)
2

(   



mi

div . 

The same argumentation keeps valid in the new proposed framework. 
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1

2

1
:)(    HHdkkxdkex n

ikx










     for 1n .
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Let  

                                           
2

sin
4

1
:)( 2

1

x
xs                  (whereby  )sgn()(1̂  s )   

and                                   

                                           )(:)( 12 xxsxs   . 

Let further 

  yddyyyxsxSxSS    )()((: 2111
    . 

    

Proposition: As alternative to the above (Lie bracket) commutator )(  we propose the 

(singular integral convolution) operator 

  xSxSS 111 :      ,      
11 )(  HSD . 

 

Proposition: The mathematical relationship between and the concept of “force” (modeled by 

the Lagrangian formalism) and the concept of “energy” (modeled by the Hamiltonian 

formalism) is given by the Legendre transformation, defined by    

),(),(:),(: yxfyxyfyyxgg      

and its reverse operation             

      )()( dyddx
x

f
ydgd  




  .   

In case f  is well defined, the Hamiltonian and the Lagrangian formalism are equivalent. As a 

consequence, in the proposed new Hilbert space framework above, where on df is required 

to be an element of the domain of the Hilbert transform operator, the concept of force the 

above is no longer valid, resp. only then “existing”, when f exists. According to J. PLemelj’s 

quote above ([JPl]) this “dispossess the potential of its biggest efficiency”. 

 

Hilbert transforms in Yukawan Potential theory: from [RDu] we cite: 

“If H denotes the classical Hilbert transform and )()( xvxHu  , then the functions )(xu  and 

)(xv  are the values on the real axis of a pair of conjugate functions, harmonic in the upper 

half-plane. This note gives a generalization of the above concepts in which the Laplace 

equation  0u  is replaced by the Yukawa equation  uu 2  and in which the Cauchy-

Riemann equations have a corresponding generalization. This leads to a generalized Hilbert 

transform 
H . The kernel functions of this new transform is expressible in terms of Bessel 

functions 
0K . The transform is of convolution type.” 
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Lie bracket and exterior derivative ([HWe], [SLi]): A differential form is a tensor field. 

Therefore its Lie derivative can be built enabled by a vector field. The Lie derivative of a 

differential form can be described by the exterior (Cartan) derivative. The Lie derivative of a 

differential form is again a differential form. The Lie derivative of a vector field Y with a vector 

field X is given by the Lie bracket of X and Y. Therefore, knowing the exterior derivative of a 

1-form is the same as knowing the Lie bracket on a vector fields (see e.g. [SDo] 1.2).  

The basic idea of S. Lie is about an appropriate replacement of finite (algebraic) group by a 

corresponding infinite (analysis) group concept, i.e. to extend from discrete (distances) to 

continuous (infinitely small, dx) symmetry transformations. With respect to the proposed 

energy inner product (built on differential forms dx) we recall from [SLi] p. 2 (see also [HWe1] 

p. 35, [HWe2] §19) the scope and the main result of the book, which built the foundation of 

the Lie algebra theory: 

Scope ([SLi] p. 1): „Definiert man den Inbegriff aller Bewegungen des Raumes durch 

analytische Gleichungen, so erhält man die Gleichungen einer Transformationsgruppe, 

welche sich von allen anderen Gruppen durch gewisse charakteristische Eigenschaften 

unterscheidet. Man kann sich nun die Aufgabe stellen, solche möglichst einfache 

Eigenschaften der besprochenen Gruppe zu finden, welche für sie charakteristisch ist.“ 

Main result ([SLi] p. 2):“Die Bewegungen des dreifach ausgedehnten Raumes bilden ein 

Gruppe von reellen Transformationen, welche die folgende Eigenschaft besitzt: Wird ein 

reeller Punkt und ein reelles hindurchgehendes Linienelement festgehalten, so ist immer 

noch continuierliche Bewegung möglich; wird jedoch ausserdem ein durch das Linienelement 

gehendes reelles Flächenelement festgehalten, so bleiben alle Punkte des Raumes in 

Ruhe.“ 

Translation: 

Scope ([SLi] p. 1): “If one defines the concept of all possible displacements/movements by 

analytical equations, one gets the equations of a transformation group, which differs from 

other groups by specific characteristic properties. One can now take the task, to look for 

most easy properties of this group, which are characteristically for it.” 

Main result ([SLi] p. 2):“ 

Main result ([SLi] p. 2):“The displacements/movements of the three dimensional space define 

a group of real valued transformations, which fulfill the following properties: if one fixes a real 

point and a real valued line element through it, then there is always a continuously 

movement possible; however, if one fixes additionally a real valued area element through the 

line element, then for all points of the space there is no movement possible.”  

As a consequence the proposed energy inner product (E(n)) enables continuous energy flow 

only by line element. Already by fixed area element the corresponding energy level change 

requires to be discrete.       
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The Hodge theorem ([HFl] 8.4): Let   be any p form and   any  )1( p form. Putting 

   dnnp 1)1(: then ),(),(  d  and there is a  )1( p form  , a  )1( p form  and a 

harmonic p form 
 
such that 

  d  . 

The forms  ,,d  are unique. 

For the relationship between differential forms and mathematical concepts like differential 

forms of geodesic curvature, total curvature and parallel transport, as well as the calculation 

of the total curvature of a surface by means of the first fundamental form we refer to e.g. 

[HCa]. For the method of Pfaffians in the theory of curves and surfaces in the context of 

conformal mapping and minimal surfaces we refer e.g. to [DSt].  

The Hilbert-Einstein functional: As an application of nonlinear variation of an “energy” 

functional we note the variation of total curvature of the Hilbert-Einstein functional: 

Let ),( gM be a compact Riemann manifold with
 
volume element

 

n

ijg dxdxdxgdV  ....det 21  

with varying metric g . The volume and total curvature (Hilbert-Einstein) functionals of g  are 

given by 

 
M

gdVgVol :)(
  
,
   

M

gg dVSgS :)(
 

Let hf ,  be symmetric )2,0( tensor, ),.....,( 21 neee  an orthogonal basis with respect to g , 

htgg t   be a variation of the metric g and 
tS  the scalar curvature of 

tg with 
0SS  . 

Putting                                
g

M ji

jijig
dVeeheefhf 

,

),(),(:,  

it holds with the Ricci tensor Ric  

gM

tt

t

t

t

hRicg
S

dVS
dt

d
gS

dt

d
,

2
)(

00

 


 . 

In in contrast to the Ricci tensor the tensor RicSg 2/  is divergence free, which is also the 

case for RicSgg  2/  with Einstein’s very small cosmological constant , which he 

introduced to enable a static universe model. The proposed ground state energy for “objects” 

dm with its corresponding (“energy”) inner product might provide an additional rational for 

such a constant  . 

We note, that the Einstein field equations, which state that the matter, described by the 

energy-momentum tensor is generated by the curvature of the space-time, is an AXIOM. 

For the equivalence of extreme problems for nonlinear problems, built on symmetric bilinear 

form and convex functionals and corresponding variational calculus built on Gateaux 

differentials for nonlinear problems we refer to e.g. [WVe]. 

For nonlinear functional analysis we refer to e.g. [KDe], [MRu]. 
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From ([ESc1] p.2, see also [HWe2] §19) we recall: “The geometric structure of the space-

time model envisage in the 1915 theory is embedded in the following two principles: 

(i) Equivalence of all four-dimensional systems of coordinates obtained from any one of 

them by arbitrary (point-) transformation; (principle of general co-

variance/invariance) 

(ii) The continuum has a metrical connexion impressed on it: that is, at every point a 

certain quadratic from of the coordinate-differentials, 

                                                   
kiik dxdxg  

called the “square of the interval” between the two points in question, has a fundamental 

meaning, invariant in the aforesaid transformations. 

This two principles are of different standing: 

(i) …. incarnates the idea of General Relativity …. 

(ii) …. On the other hand, to adopt a metrical connexion straight away does not seem to 

be the simplest way of getting at it eventually, even if nothing more were intended 

than an exposition of the 1915 theory. 

…. We shall therefore investigate the geometry of our continuum in three steps or stages, 

viz. 

(1) When only general invariance (co-variance) is imposed; 

(2) When in additional an affine connexion is imposed; 

(3) When this is specialized to carry a metric. 

The concept of an affine connexion was introduced by H. Weyl ([HWe2]). We recall from 

[HWe1] p. 46:  

“An die Stelle der von Helmholtz geforderten Homogenität des metrischen Feldes ist die 

Möglichkeit getreten, im Rahmen der feststehenden Natur der Metrik das metrische Feld 

beliebigen virtuellen Veränderungen zu unterwerfen. …. Welche quantitative Ausgestaltung 

auch immer im Rahmen der Natur der Metrik das metrische Feld gefunden haben mag, stets 

determiniert das metrische Feld eindeutig den affinen Zusammenhang. … Wenn wir zeigen 

können, dass die in der wirklichen Welt herrschende Natur der Metrik ….. die einzige ist, 

welche diesem Prinzip Genüge leistet, so haben wir wohl ein Recht zu der Behauptung, dass 

wir von dem neuen Gesichtspunkt aus, der ein den Kräften der Materie gegenüber 

nachgiebiges metrisches Feld annimmt, das Raumproblem befriedigend und vollständig 

gelöst haben.  …. Seine Lösung ist mir erst vor etwa einem Jahre gelungen … 

… aus dem metrischen Zusammenhang er gibt sich also, die Drehgruppe in P  sich von der u 

im unendlich benachbarten Punkte 0P  nur durch die Orientierung unterscheidet. … und 

wenn wir stetig vom Punkte   zu einem beliebigen Punkte der Mannigfaltigkeit übergehen,   

so erkennen wir, dass die Drehungsgruppen in allen Punkten der Mannigfaltigkeit von der 

gleichen Art sind, … Das ist die ein- für allemal feste Natur der Metrik.“ 
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The standard analysis in the 4-dimensional Einstein continuum requires concepts of 

adequate derivatives and integrals based on the physical assumption of general co-variance. 

It leads to the concept of tensor and scalar density, co-variant derivative and affine 

connexion ([ESc1], [HWe2]).  

Some prototypes of corresponding operators are the gradient, the rotation, the divergence 

and the energy-momentum (matter) tensor ikT  ([ESc1] chapter II). The tensor ikT and its 

related Riemann tensor ikR are not symmetric ([ESc1] (8.9)) in contrast to the energy-

momentum tensor for a particle of rest-mass   

ds

dx

ds

dx
m ki  

of the Restricted Theory of Relativity. The new concept above provides an opportunity for a 

gravity theory based on the principle of general contra-variance, than on general co-variance. 

This would basically require the definition of a contra-variant derivative, which creates out of 

),( lk tensor a  ),1( lk tensor, building on the   dvdu,  inner product. An analogue definition 

to the “standard” metric (enabling potentially a linear Lorentz transformation?, as for the 

Dirac equation in QED) might look like 

  dWdVdWdVdWdVgdWdVg ,::),(  
  . 

For the related properties of the Riesz operators with respect to commutation with 

translations and homothesis, as well as properties relative to rotations we refer to [BPe] 

example 9.9, 9.10 and [ESt]. With respect to the “relative to rotation” property we recall from 

[ESt]:  

let                                                    ))(),...((:)(: 1 xmxmxmm n  

be the vector of the Mikhlin multipliers of the Riesz operators and )(nSOik   , then 

))(())(( xmxm    

whereby                            








 dyyu

yx

yx
vpicuR

n

kk
nk )(..

1
   

with
  2/)1(

)
2

1
(

:






nn

n

c


 

 )())(( xmxm kjkj   

And                                    
)()

)(

1
log))((

2
())((

1

1

1

yd
y

y

yx
yxsign

i
cxm

nS

n 








  


 

)()
1

log)(
2

(
1

yd
y

y

xy
xysign

i
c

nS

n 


 


 . 

From [BPe] we note the following further properties of the Riesz operators: If jj   then 
kj RR  

is a singular convolution operator. On the other hand  
jj AInR  )/1(2    where 

jA  is a 

convolution operator. It holds 

1jR   , 
jj RR *    ,  IR j  2   ,   

22

uuR j   ,
2Lu  . 



 14 

The Hardy spaces 
pH : From [ESt1] IV 6.3, we note that a periodic function on R  in the 

form 






 xieuxu 

)(    with    




1
u

 

is an element of the function space of bounded mean oscillation, i.e. )(RBMOu .  

Suppose 

)(RBMOev xi 







 
,
  

0v

 

 then                                                )(RBMOeu xi 







   , 

 vu   . 

The Hardy spaces 
pH  are equivalent to pL  for 1p  .  

For 1p  we note  BMOH 1 , which can be seen as proper substitution of 
1L  and 

L ([HAb] 

4.7). Our concept above is about the alternative duality  

  11 HH  and 

  2/12/1 HH
 
of Hilbert 

spaces, embedded in a Hilbert scale framework with corresponding spectral theory instead of 

Banach spaces only.   

 

Remark: In ([AZy], 5.28, 7.2, 13.11) the concept of “logarithmic”,  capacity” of sets and 

convergence of Fourier series to functions with 

 



1

22

nn ban

  

is given.  

Remark: We note that in harmonic analysis the energy of the harmonic continuation )(h

 to the boundary is given by 

  



  

 












  dwds

w

w
dxdyzdhba

B B

)(
)()(

4

1
)(

2

1
)(

2
:

2

2

22

1

22 .  

 

From [HWe1] p. 65, §13) we recall a Theorem of Fejér: if the series 




1

2

nan  

is convergent, then                                 



1

:)( n

n xaxf  

is convergent for all )(*

2  LHx  with )(: 21 RS , for which for all real  the following limit exist 

)(lim
1

i

r
ref



 . 
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In ([AZy]) the following two examples to the above are provided (see also [HEd] 9.7):

 
i) 

  
)sin(2log

2cos
)(

1

x
x

x 



 



       

 whereby    C
x

xN

 )
1

log(
cos

1 

  ,    

ii) 

  












 xc

x
x

1
1

cos
)(  ,   )10;0(  x  . 

 

In [CBe] 8, Entry17(iv) its relationship to Ramanujan’s divergent series technique is 

mentioned: “Ramanujan informs us to note that 

)cot(
2

1
)2sin(

1

xx  


 , 

which also is devoid of meaning” .... “may be formally established by differentiating the well 

known equality” 

)sin(2log
2cos

1

x
x









   

. 

 

Remark: There are several other relationships in the context of Fourier transforms and 

Euler’s formula (see ([ETi] 2.1), [BPe]):  

Let  x  denote the largest integer not exceeding the real number x  and let 

   xxxx  ::)(  be the fractional part of x .  

i)       



1 2

2sin

2

1
)(






x
xxxx   ,   

ii) 










  )

1
.(.

)sinh(
2

)sin(
2)(

00
x

vP
t

dttx

t

dttx
ixsigni  , 

iii)          
2

sin

1

xx 


 



                     ,       

iv)    
)cos1(2

1
log

2

1cos

1 x

x








  ,  20  x  . 
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The Helmholtz Free Energy 

 

In this chapter we recall the mathematical background of the Helmholtz free energy of a 

quantum harmonic oscillator ([RFe]). Our proposal is to move current quantum theory models 

from a 2L  based to a 1H  based Hilbert space environment, applying spectral theory to a 

corresponding self-adjoint and bounded (singular integral) operator.  

The function 

)sinh(2log:)( xxL   

plays a key role in the context of free energy, vacuum energy of electromagnetic fields, the 

density matrix for a one-dimensional harmonic oscillator and the Planck black body radiation 

law (concerning the notations we refer to [RFe]):  

the exact value of the free energy F of a linear system of harmonic oscillators is given by 







1

)(:
k

kLF          with  
TkB:

1



    and  
2

: k
k







 

with the related probability values in the form           )( F

k
kea



 . 

Due to convergence issues in order to calculate a normalization factor Z  the ground state 

zero term 
0 is omitted and F  is replaced by  













11

2* )2()1log(
k

k

k

KeF k  

 

leading to                 

kk e
Z

ea
F

k

 


*

)(* 1*     ,      
0

1

** : Ha
k

kk 




 . 

We propose the shift from the underlying Hilbert space  
0H  into 

1H while keeping the 

information about the ground state term as part of the physical models, but applying the 

analysis of this paper to e.g. 

kk e
Z

ea
F

k

 


1)(   ,     
1

1

: 





 Ha
k

kk  

 and  

 :Z . 
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For 








 


2
sin2log

2

1
:)(






x
x

   ,     x,0 . 

In combination with 

 





1

),(),(
n

nn d 
    

and the relations (see e.g. [JNe]) 

mnmn ,),(    
,
 )(),(  nn A  

it follows 

   









1

2

1

),()(),(
n

nn

n

nn AdA  
 . 

The spectrum for a self-adjoint operator is real and closed. If the operator is additionally 

compact, then the spectrum is discrete. In case the operator is not compact, but bounded 

(continuous), there is a spectral representation built on Riemann-Stieltjes integral over 

projection operator valued step functions (see also [KBr2], Lommel polynomials). In case of 

unbounded operators the closed graph theorem can be applied to build bounded operators 

with respect to the graph norm. The below indicates to analyze the graph norm for the 

momentum operator for those physical states, represented by the elements out of 

 
0010 ,,0)),((:: HHHHH  

    

whereby 












1

2

1

2

1

222

),(),(:
n

n

n

n A   . 

 

Remark: The equivalent norm 





 

1

2

1

2

2/1

22

*
),(),(

n

nn 
 

is proposed to be used to model spin effects. 
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Remark: We note that e.g. in case of the harmonic quantum oscillator it holds in the 2L  

framework 

  ncE n 
2

1
0   

, 

which leads to the concept/requirement of “re-normalization” to ensure the existence of 

bounded Hermitian operators renormH , with  

0EHH renorm    
 . 

This is the analogue a priori representation of a physical state of a particle in the form 

   









1

2

1

),()(),(
n

nn

n

nn AdA  
 .

 

The later one can be interpreted as “ideal number” or “non-standard number” as analogue to 

a real number r  represented in the form ir   , whereby i denotes an infinitely small, finite 

non-real number, which is not equal zero, but smaller than any positive real number 
 R ([WLu]). 

 

Remark: The relationship of Hermitean commutators properties with respect to the norm 
2

 and the weaker 
1

 norm is given by (appendix resp. [SGr] 4.384, 1.441): 

i) the norms  

                        
2

1

2

0

2

0 
  AHA   

are equivalent   

ii)  the range of a “constant” operator is zero according to 

0
2

sin2log
2

1

20




dy
y


      

,

    

0
2

cot
2

1

20







dy
y




 .   
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Appendix 

From lecture notes, internet and literature 

 

The Eigenvalue problem for compact symmetric operators 

 

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product 

 .,.  and the norm ... . We will consider mappings HHK : . Unless otherwise noticed the 

standard assumptions on K are: 

 

i)  K is symmetric, i.e. for all Hyx , it holds    KyxKyx ,, 

 
ii)  K is compact, i.e. for any (infinite) sequence  

nx  bounded in H contains a 

subsequence  
nx   

such that  
nKx   

is convergent, 

iii)  K is injective, i.e. 0Kx  implies 0x  . 

 

A first consequence is 

Lemma: K is bounded, i.e. 

x

Kx
K

x 0

sup:



   . 

Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two 

other condition ii) and iii). Then K  equals 

 

x

Kxx
KN

x

,
sup)(

0


   . 

Theorem: There exists a countable sequence  
ii  , of eigenelements and eigenvalues 

iiiK    with the properties 

i)  the eigenelements are pair-wise orthogonal, i.e.

  

 
kiki ,,  

 
ii)  the eigenvalues tend to zero, i.e. 

i
i




lim

 

iii)  the generalized Fourier sums    xxS i

n

i

in 



1

,:  with n for all Hx  

iv)  the Parseval equation 

 



i

ixx
22

,  

holds for all Hx . 
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Hilbert Scales 

 

Let H be a (infinite dimensional) Hilbert space with scalar product  .,. , the norm ...  and 

A be a linear operator with the properties 

i)  A is self-adjoint, positive definite 

ii)  
1A is compact. 

 Without loss of generality, possible by multiplying A with a constant, we may assume 

  xAxx ,

       

for all )(ADx  

The operator 1 AK has the properties of the previous section. Any eigenelement of K is 
also an eigenelement of A to the eigenvalues being the inverse of the first. Now by replacing 

1 ii  we have from the previous section 

i)  there is a countable sequence  
ii  ,  with 

iiiA    
 ,

   

 
kiki ,,   and  

i
i




lim

 

ii)  any Hx is represented by  

(*)      
i

i

ixx 





1

,   and     



1

22
, ixx  . 

 

Lemma:  Let )(ADx , then  

(**)   
i

i

ii xAx 





1

,   ,     



1

222
,

i

ii xAx  ,

 

    
i

i

ii yxAyAx  ,,,
1

2





. 

Because of (*) there is a one-to-one mapping I of H to the space Ĥ of infinite sequences of 

real numbers 

 ,...),(ˆˆ:ˆ
21 xxxxH   

defined by 

Ixx ˆ    with    
ii xx ,  .    

If we equip Ĥ with the norm  

 



1

22
,ˆ

ixx   

then I is an isometry.  
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By looking at (**) it is reasonable to introduce for non-negative the weighted inner products 

     



i

iiii

i

ii yxyxyx 

  ,,ˆ,ˆ  

and the norms 

 
xxx ˆ,ˆˆ

2
  

Let Ĥ denote the set of all sequences with finite  norm. then Ĥ is a Hilbert space. The 

proof is the same as the standard one for the space 
2l . 

Similarly one can define the spaces
H : they consist of those elements Hx such that 

HIx ˆ  with scalar product  

     



i

iiii

i

ii yxyxyx 
  ,,,

 

and norm   

 
xxx ,

2
 . 

Because of the Parseval identity we have especially 

   yxyx ,,
0
  

and because of (**) it holds 

 0
2

2
, AxAxx   ,

 
)(2 ADH  . 

The set  0H  is called a Hilbert scale. The condition 0  is in our context necessary 

for the following reasons: 

Since the eigen-values
i tend to infinity we would have for 0 : 0lim i

. Then there exist 

sequences ,...),(ˆ
21 xxx  with 


2

2
x̂  , 

2

0
x̂  . 

Because of Bessel’s inequality there exists no Hx   with xIx ˆ . This difficulty could be 

overcome by duality arguments which we omit here. 
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There are certain relations between the spaces 0H  
for different indices: 

Lemma: Let   . Then 


xx   

and the embedding 
 HH  is compact. 

 

Lemma: Let   . Then 








xxx   for 

Hx  

with 








  

and  








 . 

 

Lemma: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

i) 





xtyx    

ii) 


xyx   ,
  

xy 
 

iii) 





xty )( 

  
.
 

 

Corollary: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

i) 





xtyx      for     

ii) 





xty )(         for      . 

 

Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  

 



1

222
,

i

ii xAx   

turned out to be the space
2H which is densely and compactly embedded in 

0HH  . It can 

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with 
the properties i) and ii) such that 

                       2)( HAD 

 
0)( HAR   and  Axx 

2
. 
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We give three examples of differential operator and singular integral operators, whereby the 
integral operators are related to each other by partial integration:  

 

Example 1: Let  )1,0(2LH   and  

uAu :  

with  

)1,0()1,0(:)1,0()(

2

2

1

2

2

2 WWWAD 
 

. 

Building on the orthogonal set of eigenpairs   
ii  ,  of

iA , i.e. 

iii    
   0)1()0(  ii   

it holds the inclusion  

)1,0()1,0()( 2

1

21 LHHAD WA 


. 

 

Example 2: Let  )(*
22 LH   with )(: 21 RS , i.e.   is the boundary of the unit sphere. Then 

H

 

is the space of  integrable periodic function in R  . Let 

dyyuyxkdyyu
yx

xAu )()(:)(
2

sin2log:))((  


     

and   

)()( *
22 LHAD   . 

The Fourier coefficients of this convolution are 




uukAu
2

1
)( 

 

i.e. it holds   )()( 2/1  HHAD A
 . 

 

A relation of this Fourier representation to the fractional function is given by 

  



1

2sin

2

1



x
xx  
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Remark: We give some further background and analysis of the even function 

2
sin2log:

2
sin2ln:)(

xx
xk 

  . 

Consider the model problem 

0 U          in   

      fU         on  :  , 

whereby the area   is simply connected with sufficiently smooth boundary. Let 

 1,0)(  ssyy  be a parametrization of the boundary  . Then for fixed z  the functions 

zxxU  log)(

 

are solutions of the Lapace equation and for any  )(1 L  integrable function )(tuu   the 

function 

dttuxxAu 





)(log:))((

 

is a solution of the model problem. In an appropriate Hilbert space H  this defines an integral 

operator, which is coercive for certain areas    and which fulfills the Garding inequality for 

general areas   . We give the Fourier coefficient analysis in case of  )(*

2 LH   with 

)(: 21 RS , i.e.  is the boundary of the unit sphere. Let ))sin(),(cos(:)( sssx   be a 

parametrization of )(: 21 RS  then it holds 

2
sin4

2
sin22))

2
2cos(1(2)cos(22

)sin()sin(

)cos()cos(
)()( 22

2

2 tststs
ts

ts

ts
txsx










 
















   

and therefore 

)(
2

sin2log)()(log tsk
ts

txsx 


  . 

The Fourier coefficients k  of the kernel )(xk  are calculated as follows 











 




   kdtt
t

dte
t

dxexkk tixi )cos(
2

sin2log
2

2

2
sin2log

2

1
)(

2

1
:

0

2

0

    

As  0
2

sin2log
0





  partial integration leads to     

dt
t

tt

dt
t

t
t

tk 






















000

2
sin2

)
2

12
sin()

2

12
sin(

1

2
sin2

2
cos)sin(2

1
)sin(

1
  










1
)))1cos(()..cos(

2

1
)cos()..cos(

2

1
(

1

0


















  dtttttk

. 
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Extension and generalizations 

 

For 0t we introduce an additional inner product resp. norm by 







1

2

)( ),)(,(),(
i

ii

t

t yxeyx i 


    

2

)(

2

)(
),( tt

xxx   . 

Now the factor have exponential decay 
tie


 instead of a polynomial decay in case of 

i . 

Obviously we have 


 xtcx

t
),(

)(
  for 

Hx  

with ),( tc  depending only from  and 0t . Thus the normt )(  is weaker than 

any norm . On the other hand any negative norm, i.e. 


x  with 0 , is bounded by the  

norm0 and the newly introduced normt )( . It holds: 

 

Lemma: Let 0 be fixed. The norm  of any 
0Hx  is bounded by 

2

)(

/2

0

22

t

t xexx 





 

with 0 being arbitrary. 

 

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of 
the norm , which can be reformulated in the form ( 0,  , 1 ) 

2/22










xexx 
 

applying Young’s inequality to 









)()(
222

xxx   . 

The counterpart of lemma 4 above is 

Lemma: Let 0, t be fixed. To any 
0Hx  there is a )(xyy t according to 

i) xyx    

ii) xy 1

1

 
 

iii) xeyx t

t

/

)(


  
. 
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Eigenfunctions and Eigendifferentials 

 

Let H be a (infinite dimensional) Hilbert space with inner product  .,. , the norm ...  

and A be a linear self-adjoint, positive definite operator, but we omit the additional 

assumption, that 
1A compact. Then the operator 1 AK does not fulfill the properties leading 

to a discrete spectrum.  

We define a set of projections operators onto closed subspaces of H in the following way: 

),( HHLR   

 





 dE ,*)(:

0

    
,
     ,0  , 

i.e.                                                      ddE ,*)(  . 

The spectrum CA )(  of the operator A is the support of the spectral measure dE . 

The set E  fulfills the following properties: 

i) E  is a projection operator for all R  

ii) for    it follows 
 EE   i.e. 

 EEEEE   

iii) 0lim 





E  and IdE 




lim  

iv) 





EE 




lim  . 

 

Proposition: Let E  be a set of projection operators with the properties i)-iv) having a 

compact support  ba, . Let    Rbaf ,:  be a continuous function. Then there exists exactly 

one Hermitian operator HHA f :  with 






 ),()(),( xxEdfxxA f   . 

Symbolically one writes                            





 dEA  . 

Using the abbreviation 

),(:)(, yxEyx     
, 

 ),(:)(, yxEdd yx    

one gets 










 )(),(),( ,   xxdyxEdyAx         
,   









 )(,

22

1
  xxdxEdx  










 )(),(),( ,

222   xxdyxEdyxA  ,  








 )(,

2222
  xxdxEdAx  . 
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The function
 

2
:)( xE   is called the spectral function of A  for the vector x . It has the 

properties of a distribution function. 

It hold the following eigenpair relations 

iiiA          A     
2

  
,
 )(),(     . 

The   are not elements of the Hilbert space. The so-called eigendifferentials, which play a 

key role in quantum mechanics, are built as superposition of such eigenfunctions.  

 

Let I be the interval covering the continuous spectrum of A . We note the following 
representations: 

  dxxx
I

ii ),(),(
1

 


 
, 

   dxxAx
I

iii ),(),(
1

 


 

  dxxx
I

i  


2

1

22
),(),(  

, 
 

  dxxx
I

ii  


2

1

22

1
),(),(

 

  dxxAxx
I

ii  


2
22222

2
),(),(  . 

 

Example: The location operator 
xQ  

and the momentum operator 
xP  both have only a 

continuous spectrum. For positive energies 0  the Schrödinger equation 

)()( xxH     

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying 

domain HM  which is dense in H . Only if one builds wave packages out of )(x it results 

into elements of H . The practical way to find Eigen-differentials is looking for solutions of a 
distribution equation. 
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Hermitian Operator and Physical Observabales  

 

The spectrum of a hermitian, positive definite operator  

HADA )(:
 

with domain )(AD in a complex-valued Hilbert space H is discrete. This property enables 

an axiomatic building of the quantum mechanics, whereby, roughly speaking, physical states 

are modeled by the elements of the Hilbert space, observables of states by the operator A 

and the mean value of the observable A at the state   with   is given by 

 ,A  . 

 In other words, the expectation value of an operator Â  is given by  

 rdrArA


)(ˆ)(*   

and all physical observables are represented by such expectation values. Obviously, the 

value of a physical observable such as energy or density must be real, so it’s required A  to 

be real. This means that it must be 
*

AA  , or  

  
**

* )()(ˆ)(ˆ)( ArdrrArdrArA


  

An operator , which satisfy this condition are called Hermitian. One can also show that for a 

Hermitian operator,  

   rdrrArdrAr


)()(ˆ)(ˆ)( 2

*

12

*

1   

for any two states  
1  and  

2 . 

For the eigenvalue problem of a self-adjoint, positive operator A  

 A  

the eigenvalues    are the discrete spectrum n  with either finite or countable infinite set of 

values  

nnA      ,  1
2
n  

In this case the mean value of A is given by 

 AA ,:  . 
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Let nw  the probability, that the eigenvalue occurs of a measurement of the observables A 

then the mean value of  A is defined by 

 
n

nnn

n

nn AwwA  ,:         
n

nn  

and it holds 

 
n

nnnn

n

nn

n

nn AAAA  ,)(,,:
*

 

 
n

nn

n

nnnnnAA 
2*

,,:  , 

i.e.                                                      
22

, nnnw   . 

 

The general solution of the Schrödinger equation is given by 

)(),( xectx
n

n

ti

n
n

 



    . 

In case the operator A is only hermitian (without being positive definite) Hilbert, von 

Neumann and Dirac developed a corresponding spectral theory. This leads to a continuous 

spectrum )( , indexed by a continuous  . In this case );(  x  denotes an eigen function to 

the eigen value )( . The norm of this function is infinite, i.e. the function is not an element 

of the Hilbert space. An approximation to this function with finite norm is given (with 

sufficiently small  ) by the eigen differential  










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2/

2/

);(
1

);





 


 dxx   .  

All for the Hilbert space related properties are valid for the eigen differentials, but not for the 

eigenfunction itself. The scalar product of the eigenfunction is normed to a Dirac -function:  

)();(),;(   xx  . 

The norm of the eigen differentials is given by: 
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);),; ddxdxxx  
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
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







2/

2/

2/

2/

)(
1

);),; ddxx  

The integral is 1 for     (with appropriate norm factor) and 0 if    .  
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In case if   is a momentum the eigendifferential gives a wave package with finite distance  

  in the momentum space and therefore with finite distance 



1

x
  in the particle space. 

Such a package can normed to the value 1 (1 particle). x  (and correspondingly  ) has to 

be larger than all other typical distances of the problem. In this sense eigendifferentials 

correspond to the formalism of wave package modeling. 

The eigenfunctions of the discrete and continuous spectrum build an extended Hilbert space 

to ensure that for every   it holds 

  
n

nn dxcxcx  );()()()(  

with  

)(),( xxc nn   

and  

)(),;()( xxc    

It holds the Parceval identity:  

  
n

n dcc 
22

)(,   

and the eigendifferential are orthogonal wave packages. 

If for every function 
2L such a representation is possible, one calls the system.     a 

complete orthogonal system. Such a complete orthogonal system is not uniquely defined. 

There is always the degree of freedom 

- to choose arbitrarily the phase of each eigenfunction  

- the set of the non-standard eigenvalues can be orthogonized on different ways 

- to replace the index   of the continuous spectrum by an index )( with 

)( differentiable, monotone function of  . Then  






dd

x
x

/

);(
);(  . 

Not all existing hermitian operators are built on a complete orthogonal system of 

eigenfunctions. For all operators, which represent physical observables, there exists such a 

complete orthogonal system. 
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Hermite Polynomials 

 

The weighted Hermite polynomials (e.g. [RSt] 7.6) 




!2

)(
:)(

2

2

n

xHe
x

n

n

x

n





   

with  22

)1(:)( x

n

n
xn

n e
dx

d
exH   ,  1)(0 xH ,  xxH )(1

, 

form a set of orthonormal functions in ),(2 L , i.e. the Hermite polynomials have only real 

zeros. As
2Ln  leading to 

2LH nn    and

 

0),( nn   
,
       nn HspanspanHL   ::2

 . 

The Hermite polynomials )(xHn
 fulfill the recursion formula 

)2()1(2)()1()2(2)2( 221 xHnxbnxxHxH nnnnn     . 

Using the abbreviation
               

!

)!1(2
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n

n
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
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!

)!2(
:

n

n
bn




 

this gives the recursion formula 

)()1()(:)( 21 xbnxxax nnnnn   
,   
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 ,  24/12/1

1

2

2:)(

x

xex


      . 

From this the recursion formula for the corresponding Hilbert transforms of 
2LH nn    

can be 

calculated by
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An alternative polynomial system to the Hermite polynomials 

 

We propose to apply the Lommel polynomials )(1. xgn 
 as corresponding polynomial 

orthogonal system framework to build a (negatively scaled) Hilbert space. D. Dickinson’s 

proof ([DDi]) of the orthogonality of the modified Lommel polynomials is built on a properly 

defined Riemann-Stieltjes integral, enabled by the density function   

dx
xJx

xJ
d

)2(

)2(1







   with      

)(

)(
lim

)2(
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xg

xg

xJx
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n

n

n














 
 , 

which is analytic outside any circle that contains the finite zeros of )/1( xJ . The prize to be 

paid to build the orthogonality relation is an only stepwise density (bounded variation) 

function 
d .  

The Lommel polynomials )(:)( 0. xgxg nn  , defined by ( [GWa] 9-6) 

 
m

n
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n xxg
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 m)-1(n

2m)!-(nm!
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)(:)
2

1
( 2/ xgx

x
h n

n
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fulfill the recurrence relations 

)()()1()( 1.1..1 xxgxgnxg nnn       , 1:)(:)( 10  xgxg
 
.
 

)()()(2)( .1..1 xhxhnxxh nnn       , 0)(.1  xh   
1:)(.0 xh 

 

A relation between the modified Lommel polynomials and the Bessel function is given by 

Hurwitz’s asymptotic formula ([GWa] 9-65): 
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From the above and [GWa] 9-65, it follows: 
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Favards’s theorem (([TCh] 7, II, theor. 6.4) implies that the Lommel polynomials are 

orthogonal polynomials with respect to a positive weighted, bounded variation measure 

function. We recall from [DDi] 

(*)     
)1(2

)
1

()
1

(
1 ,

1
2 







 nj
h

j
h

j

mn

k

n

k

m

k k

   . 

With the relations above it follows 
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Proposition: For the Lommel polynomials the following orthogonality relation holds true 

(**)
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Orthogonal polynomials have only real zeros and are eigenfunctions of corresponding self-

adjoint differential operators. Following the arguments from §2, [DBu] and [GPo3] this 

property implies that the zeros of its Mellin transforms lie all on the critical line. 

The proof of the orthogonality of the modified Lommel polynomials is built on a properly 

defined Riemann-Stieltjes integral [DDi], enabled by the term   



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
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d  ,   

which is analytic outside any circle that contains the finite zeros of )/1(0 xJ . Hence it 

possesses a Laurent expansion about the origin that converges uniformly on and in any 

annulus, whose inside boundary has the finite zeros of )/1(0 xJ  in its interior: Let C  be the 

contour that encircles the origin in a positive direction and that lies within the annulus.  

Then it holds [DDi]   
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Let )(x  the non-decreasing step function having increase of  
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Black-body radiation 

 

A famous usage of Dirichlet’s series is in the context of Planck’s black-body radiation 

function  
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
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
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with   
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1 2 hcc    and khcc /2   . The relation to the Zeta function  
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This describes the total radiation and its spectral density at the same time, i.e. 

dx
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The weak formulation (and the positive Berry conjecture answer) should enable an 

alternative model for the total radiation and its spectral density. 
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Further information from internet 

 

A. Einstein developed his quantum/photon concept motivated by the question: „if one moves 

exactly in parallel to a light signal (a photon or a wave?), how the light signal looks like? In 

principle it should be that the signal of light is a sequence of stationary waves, which are 

fixed in the time, i.e. the light signal should look like without any movement. If one follows it, it 

looks like a non-moving, oscillating, electromagnetic field. But something like this seems to 

be not existed neither caused by observation, nor by the Maxwell-equations model. The later 

ones exclude the existence of stationary, inelastic waves. Based on the Maxwell equations 

the electrons would have to lose its energy within nearly no time. 

In any relativistic theory the vacuum, the state of lowest energy, if it exists in „reality“, has to 

have the energy zero. 

In the same way for any free particle with momentum p


 
and mass m  the energy has to be 

2242 cpcmE


 .  

In the literature the ground state energy of the harmonic operator is mostly defined by 
2

1  . 

Already M. Planck knew that this cannot be, when deriving his radiation formula: he assigned 

states with n photons the energy n
 
, but not the value  

)
2

1
( n   , 

which is not compatible with the relativistic co-variant description of photons.  

 

The ground state energy is not measurable. Its chosen value is therefore arbitrarily, triggered 

only by the fact, to keep calculations as easily as possible, and, mainly, to ensure convergent 

integrals/series. Energies of freely composed systems should be additive. For photons in a 

box section (cavity) there are infinite numbers of frequencies 
i . If one assigns any 

frequency a ground state energy value 2/i , then the ground state energy without photons 

has the infinite energy  

 
i

i
2

1
. 
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The miss understanding, that the ground state energy is fixed and uniquely defined, 

starts already in the classical physics: The definition of the Hamiltonian 

VTx
m

p
H  :

2

1

2

22
2

  

defines the non-measurable ground state energy in that way, that the state of lowest energy, 

the point )0,0(  px  in the phase space, that the energy is zero: 

the kinetic energy of strings with mass   are given by 

dxtxuT

l

x
0

2 ).,(
2

1
  . 

The internal forces of strings (being looked at as mechanical systems) are built on strains, 

depending proportionally from its lengths: 

dxtxuL

l

x 
0

2 ),(1  . 

For small displacements this is replaced by 

dxtxullL

l
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Correspondingly the potential energy )(xV is approximately defined by 

lL
dL

dV
llVllVLV   )()()(  . 

Putting 

lLs
dL

dV
:  

as “tension” or “strain constant”, the choice  

0:)( lV  

simplifies the algebraic term for the potential energy V  in the form:   

dxtxuV

l

xs 
0

2 ).,(
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1
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For example for the “string velocity”  



 s

sc :  

the wave equation of strings is given by 

02  xxstt ucu . 
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Alternatively to )(xV  in case of the harmonic oscillator one could have chosen instead e.g.  

2/
2

1
)( 22   xxV     

or (with reference to the theory of minimal surfaces, using  xx 22 coshsinh1  )   

    xxV cosh)(1  . 

For a single particle in a potential energy ),( txV  the Schrödinger equation is ([RFe] 4-1) 
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With respect to our proposal above we note 
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